The number of k-SAT functions

被引:5
|
作者
Bollobás, B
Brightwell, GR [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[3] Univ London London Sch Econ & Polit Sci, Dept Math, London WC2A 2AE, England
关键词
D O I
10.1002/rsa.10079
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the number SAT(k; n) of Boolean functions of n variables that can be expressed by a k-SAT formula. Equivalently, we study the number of subsets of the n-cube 2(n) that can be represented as the union of (n - k)-subcubes. In The number of 2-SAT functions (Isr J Math, 133 (2003), 45-60) the authors and Imre Leader studied SAT(k; n) for k less than or equal to n/2, with emphasis on the case k = 2. Here, we prove bounds on SAT(k; n) for k greater than or equal to n/2; we see a variety of different types of behavior. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:227 / 247
页数:21
相关论文
共 50 条
  • [1] Enumerating k-SAT functions
    Dong, Dingding
    Mani, Nitya
    Zhao, Yufei
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2141 - 2184
  • [2] On the K-sat model with large number of clauses
    Panchenko, Dmitry
    RANDOM STRUCTURES & ALGORITHMS, 2018, 52 (03) : 536 - 542
  • [3] Nearly All k-SAT Functions Are Unate
    Balogh, Jozsef
    Dong, Dingding
    Lidicky, Bernard
    Mani, Nitya
    Zhao, Yufei
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 958 - 962
  • [4] Complexity of k-SAT
    Impagliazzo, R
    Paturi, R
    FOURTEENTH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 1999, : 237 - 240
  • [5] On the complexity of k-SAT
    Impagliazzo, R
    Paturi, R
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2001, 62 (02) : 367 - 375
  • [6] The Number of Satisfying Assignments of Random Regular k-SAT Formulas
    Coja-Oghlan, Amin
    Wormald, Nick
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (04): : 496 - 530
  • [7] Polarised random k-SAT
    Danielsson, Joel Larsson
    Markstrom, Klas
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (06) : 885 - 899
  • [8] The asymptotic k-SAT threshold
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    ADVANCES IN MATHEMATICS, 2016, 288 : 985 - 1068
  • [9] An Approximation Algorithm for #k-SAT
    Thurley, Marc
    29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 : 78 - 87
  • [10] FRACTAL STRUCTURE ON k-SAT
    Wang, Qin
    Xi, Lifeng
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2011, 19 (02) : 227 - 232