Nearly All k-SAT Functions Are Unate

被引:0
|
作者
Balogh, Jozsef [1 ]
Dong, Dingding [2 ]
Lidicky, Bernard [3 ]
Mani, Nitya [4 ]
Zhao, Yufei [4 ]
机构
[1] Univ Illinois, Champaign, IL 61820 USA
[2] Harvard Univ, Cambridge, MA USA
[3] Iowa State Univ, Ames, IA USA
[4] MIT, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
k-SAT function; sum of squares; hypergraph container method; Turan problems; NUMBER;
D O I
10.1145/3564246.3585123
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that 1 - o (1) fraction of all k-SAT functions on n Boolean variables are unate (i.e., monotone after first negating some variables), for any fixed positive integer : and as n -> infinity. This resolves a conjecture by Bollobas, Brightwell, and Leader from 2003. This paper is the second half of a two-part work solving the problem. The first part, by Dong, Mani, and Zhao, reduces the conjecture to a Turan problem on partially directed hypergraphs. In this paper we solve this Turan problem.
引用
收藏
页码:958 / 962
页数:5
相关论文
共 50 条
  • [1] The number of k-SAT functions
    Bollobás, B
    Brightwell, GR
    RANDOM STRUCTURES & ALGORITHMS, 2003, 22 (03) : 227 - 247
  • [2] Enumerating k-SAT functions
    Dong, Dingding
    Mani, Nitya
    Zhao, Yufei
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2141 - 2184
  • [3] Complexity of k-SAT
    Impagliazzo, R
    Paturi, R
    FOURTEENTH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 1999, : 237 - 240
  • [4] On the complexity of k-SAT
    Impagliazzo, R
    Paturi, R
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2001, 62 (02) : 367 - 375
  • [5] Polarised random k-SAT
    Danielsson, Joel Larsson
    Markstrom, Klas
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (06) : 885 - 899
  • [6] The asymptotic k-SAT threshold
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    ADVANCES IN MATHEMATICS, 2016, 288 : 985 - 1068
  • [7] An Approximation Algorithm for #k-SAT
    Thurley, Marc
    29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 : 78 - 87
  • [8] FRACTAL STRUCTURE ON k-SAT
    Wang, Qin
    Xi, Lifeng
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2011, 19 (02) : 227 - 232
  • [9] The Asymptotic k-SAT Threshold
    Coja-Oghlan, Amin
    STOC'14: PROCEEDINGS OF THE 46TH ANNUAL 2014 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2014, : 804 - 813
  • [10] Approximating MIN k-SAT
    Avidor, A
    Zwick, U
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2002, 2518 : 465 - 475