Nearly All k-SAT Functions Are Unate

被引:0
|
作者
Balogh, Jozsef [1 ]
Dong, Dingding [2 ]
Lidicky, Bernard [3 ]
Mani, Nitya [4 ]
Zhao, Yufei [4 ]
机构
[1] Univ Illinois, Champaign, IL 61820 USA
[2] Harvard Univ, Cambridge, MA USA
[3] Iowa State Univ, Ames, IA USA
[4] MIT, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
k-SAT function; sum of squares; hypergraph container method; Turan problems; NUMBER;
D O I
10.1145/3564246.3585123
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that 1 - o (1) fraction of all k-SAT functions on n Boolean variables are unate (i.e., monotone after first negating some variables), for any fixed positive integer : and as n -> infinity. This resolves a conjecture by Bollobas, Brightwell, and Leader from 2003. This paper is the second half of a two-part work solving the problem. The first part, by Dong, Mani, and Zhao, reduces the conjecture to a Turan problem on partially directed hypergraphs. In this paper we solve this Turan problem.
引用
收藏
页码:958 / 962
页数:5
相关论文
共 50 条
  • [21] A BETTER ALGORITHM FOR RANDOM k-SAT
    Coja-Oghlan, Amin
    SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 2823 - 2864
  • [22] Weak lumpability in the k-SAT problem
    Grinfeld, M
    Knight, PA
    APPLIED MATHEMATICS LETTERS, 2000, 13 (06) : 49 - 53
  • [23] Analysis of backtracking of random k-SAT
    Xu, Ke
    Li, Wei
    Jisuanji Xuebao/Chinese Journal of Computers, 2000, 23 (05): : 454 - 458
  • [24] A Better Algorithm for Random k-SAT
    Coja-Oghlan, Amin
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 292 - 303
  • [25] The K-SAT problem in a simple limit
    Leuzzi, L
    Parisi, G
    JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (5-6) : 679 - 695
  • [26] Going After the k-SAT Threshold
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 705 - 714
  • [27] On the critical exponents of random k-SAT
    Wilson, DB
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (02) : 182 - 195
  • [28] A novel weighting scheme for random k-SAT关于随机 k-SAT 的新加权方法
    Jun Liu
    Ke Xu
    Science China Information Sciences, 2016, 59
  • [29] Scoring Functions Based on Second Level Score for k-SAT with Long Clauses
    Cai, Shaowei
    Luo, Chuan
    Su, Kaile
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2014, 51 : 413 - 441
  • [30] A Note on Random k-SAT for Moderately Growing k
    Liu, Jun
    Gao, Zongsheng
    Xu, Ke
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):