Nearly All k-SAT Functions Are Unate

被引:0
|
作者
Balogh, Jozsef [1 ]
Dong, Dingding [2 ]
Lidicky, Bernard [3 ]
Mani, Nitya [4 ]
Zhao, Yufei [4 ]
机构
[1] Univ Illinois, Champaign, IL 61820 USA
[2] Harvard Univ, Cambridge, MA USA
[3] Iowa State Univ, Ames, IA USA
[4] MIT, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
k-SAT function; sum of squares; hypergraph container method; Turan problems; NUMBER;
D O I
10.1145/3564246.3585123
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that 1 - o (1) fraction of all k-SAT functions on n Boolean variables are unate (i.e., monotone after first negating some variables), for any fixed positive integer : and as n -> infinity. This resolves a conjecture by Bollobas, Brightwell, and Leader from 2003. This paper is the second half of a two-part work solving the problem. The first part, by Dong, Mani, and Zhao, reduces the conjecture to a Turan problem on partially directed hypergraphs. In this paper we solve this Turan problem.
引用
收藏
页码:958 / 962
页数:5
相关论文
共 50 条
  • [31] BELIEF PROPAGATION ON THE RANDOM k-SAT MODEL
    Coja-Oghlan, Amin
    Mueller, Noela
    Ravelomanan, Jean B.
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (05): : 3718 - 3796
  • [32] On the K-sat model with large number of clauses
    Panchenko, Dmitry
    RANDOM STRUCTURES & ALGORITHMS, 2018, 52 (03) : 536 - 542
  • [33] Constraint satisfaction: random regular k-SAT
    Coja-Oghlan, Amin
    STATISTICAL PHYSICS, OPTIMIZATION, INFERENCE, AND MESSAGE-PASSING ALGORITHMS, 2016, : 231 - 251
  • [34] Strong refutation heuristics for random k-SAT
    Coja-Oghlan, Amin
    Goerdt, Andreas
    Lanka, Andre
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (01): : 5 - 28
  • [35] On Efficiently Solvable Cases of Quantum k-SAT
    Marco Aldi
    Niel de Beaudrap
    Sevag Gharibian
    Seyran Saeedi
    Communications in Mathematical Physics, 2021, 381 : 209 - 256
  • [36] A novel weighting scheme for random k-SAT
    Jun LIU
    Ke XU
    Science China(Information Sciences), 2016, 59 (09) : 5 - 10
  • [37] A novel weighting scheme for random k-SAT
    Liu, Jun
    Xu, Ke
    SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (09)
  • [38] A pure hardware k-SAT solver for FPGA
    Bousmar, Khadija
    2018 IEEE 5TH INTERNATIONAL CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'18), 2018, : 481 - 485
  • [39] Combinatorial Landscape Analysis for k-SAT Instances
    Albrecht, Andreas A.
    Lane, Peter C. R.
    Steinhofel, Kathleen
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2498 - +
  • [40] A lower bound for DLL algorithms for k-SAT
    Pudlák, P
    Impagliazzo, R
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 128 - 136