The number of k-SAT functions

被引:5
|
作者
Bollobás, B
Brightwell, GR [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[3] Univ London London Sch Econ & Polit Sci, Dept Math, London WC2A 2AE, England
关键词
D O I
10.1002/rsa.10079
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the number SAT(k; n) of Boolean functions of n variables that can be expressed by a k-SAT formula. Equivalently, we study the number of subsets of the n-cube 2(n) that can be represented as the union of (n - k)-subcubes. In The number of 2-SAT functions (Isr J Math, 133 (2003), 45-60) the authors and Imre Leader studied SAT(k; n) for k less than or equal to n/2, with emphasis on the case k = 2. Here, we prove bounds on SAT(k; n) for k greater than or equal to n/2; we see a variety of different types of behavior. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:227 / 247
页数:21
相关论文
共 50 条
  • [21] A quantum differentiation of k-SAT instances
    Tamir, B.
    Ortiz, G.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [22] The K-SAT Problem in a Simple Limit
    Luca Leuzzi
    Giorgio Parisi
    Journal of Statistical Physics, 2001, 103 : 679 - 695
  • [23] A BETTER ALGORITHM FOR RANDOM k-SAT
    Coja-Oghlan, Amin
    SIAM JOURNAL ON COMPUTING, 2010, 39 (07) : 2823 - 2864
  • [24] Weak lumpability in the k-SAT problem
    Grinfeld, M
    Knight, PA
    APPLIED MATHEMATICS LETTERS, 2000, 13 (06) : 49 - 53
  • [25] Analysis of backtracking of random k-SAT
    Xu, Ke
    Li, Wei
    Jisuanji Xuebao/Chinese Journal of Computers, 2000, 23 (05): : 454 - 458
  • [26] A Better Algorithm for Random k-SAT
    Coja-Oghlan, Amin
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT I, 2009, 5555 : 292 - 303
  • [27] The K-SAT problem in a simple limit
    Leuzzi, L
    Parisi, G
    JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (5-6) : 679 - 695
  • [28] Going After the k-SAT Threshold
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 705 - 714
  • [29] On the critical exponents of random k-SAT
    Wilson, DB
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (02) : 182 - 195
  • [30] A novel weighting scheme for random k-SAT关于随机 k-SAT 的新加权方法
    Jun Liu
    Ke Xu
    Science China Information Sciences, 2016, 59