The number of k-SAT functions

被引:5
|
作者
Bollobás, B
Brightwell, GR [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[3] Univ London London Sch Econ & Polit Sci, Dept Math, London WC2A 2AE, England
关键词
D O I
10.1002/rsa.10079
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the number SAT(k; n) of Boolean functions of n variables that can be expressed by a k-SAT formula. Equivalently, we study the number of subsets of the n-cube 2(n) that can be represented as the union of (n - k)-subcubes. In The number of 2-SAT functions (Isr J Math, 133 (2003), 45-60) the authors and Imre Leader studied SAT(k; n) for k less than or equal to n/2, with emphasis on the case k = 2. Here, we prove bounds on SAT(k; n) for k greater than or equal to n/2; we see a variety of different types of behavior. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:227 / 247
页数:21
相关论文
共 50 条
  • [31] Scoring Functions Based on Second Level Score for k-SAT with Long Clauses
    Cai, Shaowei
    Luo, Chuan
    Su, Kaile
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2014, 51 : 413 - 441
  • [32] A Note on Random k-SAT for Moderately Growing k
    Liu, Jun
    Gao, Zongsheng
    Xu, Ke
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [33] BELIEF PROPAGATION ON THE RANDOM k-SAT MODEL
    Coja-Oghlan, Amin
    Mueller, Noela
    Ravelomanan, Jean B.
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (05): : 3718 - 3796
  • [34] Constraint satisfaction: random regular k-SAT
    Coja-Oghlan, Amin
    STATISTICAL PHYSICS, OPTIMIZATION, INFERENCE, AND MESSAGE-PASSING ALGORITHMS, 2016, : 231 - 251
  • [35] Strong refutation heuristics for random k-SAT
    Coja-Oghlan, Amin
    Goerdt, Andreas
    Lanka, Andre
    COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (01): : 5 - 28
  • [36] On Efficiently Solvable Cases of Quantum k-SAT
    Marco Aldi
    Niel de Beaudrap
    Sevag Gharibian
    Seyran Saeedi
    Communications in Mathematical Physics, 2021, 381 : 209 - 256
  • [37] A novel weighting scheme for random k-SAT
    Jun LIU
    Ke XU
    Science China(Information Sciences), 2016, 59 (09) : 5 - 10
  • [38] A novel weighting scheme for random k-SAT
    Liu, Jun
    Xu, Ke
    SCIENCE CHINA-INFORMATION SCIENCES, 2016, 59 (09)
  • [39] A pure hardware k-SAT solver for FPGA
    Bousmar, Khadija
    2018 IEEE 5TH INTERNATIONAL CONGRESS ON INFORMATION SCIENCE AND TECHNOLOGY (IEEE CIST'18), 2018, : 481 - 485
  • [40] Combinatorial Landscape Analysis for k-SAT Instances
    Albrecht, Andreas A.
    Lane, Peter C. R.
    Steinhofel, Kathleen
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2498 - +