Exponential lower bounds for depth 3 arithmetic circuits in algebras of functions over finite fields

被引:50
|
作者
Grigoriev, D
Razborov, A
机构
[1] Univ Rennes 1, IMR, F-35042 Rennes, France
[2] VA Steklov Math Inst, Moscow 117966, Russia
关键词
exponential lower bounds; depth 3 arithmetic circuits; finite fields;
D O I
10.1007/s002009900021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A depth 3 arithmetic circuit can be viewed as a sum of products of linear functions. We prove an exponential complexity lower bound on depth 3 arithmetic circuits computing some natural symmetric functions over a finite field F. Also, we study the complexity of the functions f : D-n --> F for subsets D subset of F, In particular, we prove an exponential lower bound on the complexity of depth 3 arithmetic circuits computing some explicit functions f: (F*)(n) --> F (in particular, the determinant of a matrix).
引用
收藏
页码:465 / 487
页数:23
相关论文
共 50 条
  • [42] Lower Bounds for Monotone Arithmetic Circuits via Communication Complexity
    Chattopadhyay, Arkadev
    Datta, Rajit
    Mukhopadhyay, Partha
    STOC '21: PROCEEDINGS OF THE 53RD ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2021, : 786 - 799
  • [43] Lower bounds for depth-2 and depth-3 Boolean circuits with arbitrary gates
    Cherukhin, Dmitriy Yu.
    COMPUTER SCIENCE - THEORY AND APPLICATIONS, 2008, 5010 : 122 - 133
  • [44] Depth-3 arithmetic formulae over fields of characteristic zero
    Shpilka, A
    Wigderson, A
    FOURTEENTH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 1999, : 87 - 96
  • [45] Depth Lower Bounds against Circuits with Sparse Orientation
    Koroth, Sajin
    Sarma, Jayalal
    COMPUTING AND COMBINATORICS, COCOON 2014, 2014, 8591 : 596 - 607
  • [46] On the limits of depth reduction at depth 3 over small finite fields
    Chillara, Suryajith
    Mukhopadhyay, Partha
    INFORMATION AND COMPUTATION, 2017, 256 : 35 - 44
  • [47] Depth Lower Bounds against Circuits with Sparse Orientation
    Koroth, Sajin
    Sarma, Jayalal
    FUNDAMENTA INFORMATICAE, 2017, 152 (02) : 123 - 144
  • [48] LOWER BOUNDS AND SEPARATIONS FOR CONSTANT DEPTH MULTILINEAR CIRCUITS
    Raz, Ran
    Yehudayoff, Amir
    COMPUTATIONAL COMPLEXITY, 2009, 18 (02) : 171 - 207
  • [49] Lower Bounds and Separations for Constant Depth Multilinear Circuits
    Ran Raz
    Amir Yehudayoff
    computational complexity, 2009, 18 : 171 - 207
  • [50] Lower bounds and separations for constant depth multilinear circuits
    Raz, Ran
    Yehudayoff, Amir
    TWENTY-THIRD ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2008, : 128 - 139