Exponential lower bounds for depth 3 arithmetic circuits in algebras of functions over finite fields

被引:50
|
作者
Grigoriev, D
Razborov, A
机构
[1] Univ Rennes 1, IMR, F-35042 Rennes, France
[2] VA Steklov Math Inst, Moscow 117966, Russia
关键词
exponential lower bounds; depth 3 arithmetic circuits; finite fields;
D O I
10.1007/s002009900021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A depth 3 arithmetic circuit can be viewed as a sum of products of linear functions. We prove an exponential complexity lower bound on depth 3 arithmetic circuits computing some natural symmetric functions over a finite field F. Also, we study the complexity of the functions f : D-n --> F for subsets D subset of F, In particular, we prove an exponential lower bound on the complexity of depth 3 arithmetic circuits computing some explicit functions f: (F*)(n) --> F (in particular, the determinant of a matrix).
引用
收藏
页码:465 / 487
页数:23
相关论文
共 50 条
  • [31] Lower Bounds for Arithmetic Circuits via the Hankel Matrix
    Nathanaël Fijalkow
    Guillaume Lagarde
    Pierre Ohlmann
    Olivier Serre
    computational complexity, 2021, 30
  • [33] Exponential lower bounds on the size of constant-depth threshold circuits with small energy complexity
    Uchizawa, Kei
    Takimoto, Eiji
    THEORETICAL COMPUTER SCIENCE, 2008, 407 (1-3) : 474 - 487
  • [34] TOP-DOWN LOWER BOUNDS FOR DEPTH-3 CIRCUITS
    HASTAD, J
    JUKNA, S
    PUDLAK, P
    COMPUTATIONAL COMPLEXITY, 1995, 5 (02) : 99 - 112
  • [35] COMPUTING LOWER BOUNDS ON TENSOR RANK OVER FINITE-FIELDS
    LASKOWSKI, SJ
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1982, 24 (01) : 1 - 14
  • [36] ARITHMETIC CIRCUITS: A CHASM AT DEPTH 3
    Gupta, Ankit
    Kamath, Pritish
    Kayal, Neeraj
    Saptharishi, Ramprasad
    SIAM JOURNAL ON COMPUTING, 2016, 45 (03) : 1064 - 1079
  • [37] L-functions of twisted exponential sums over finite fields
    Wei Cao
    Shaofang Hong
    The Ramanujan Journal, 2020, 53 : 569 - 584
  • [38] L-functions of twisted exponential sums over finite fields
    Cao, Wei
    Hong, Shaofang
    RAMANUJAN JOURNAL, 2020, 53 (03): : 569 - 584
  • [39] L-functions of certain exponential sums over finite fields
    Chao Chen
    Xin Lin
    Mathematische Zeitschrift, 2022, 300 : 1851 - 1871
  • [40] L-functions of certain exponential sums over finite fields
    Chen, Chao
    Lin, Xin
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (02) : 1851 - 1871