Exponential lower bounds for depth 3 arithmetic circuits in algebras of functions over finite fields

被引:50
|
作者
Grigoriev, D
Razborov, A
机构
[1] Univ Rennes 1, IMR, F-35042 Rennes, France
[2] VA Steklov Math Inst, Moscow 117966, Russia
关键词
exponential lower bounds; depth 3 arithmetic circuits; finite fields;
D O I
10.1007/s002009900021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A depth 3 arithmetic circuit can be viewed as a sum of products of linear functions. We prove an exponential complexity lower bound on depth 3 arithmetic circuits computing some natural symmetric functions over a finite field F. Also, we study the complexity of the functions f : D-n --> F for subsets D subset of F, In particular, we prove an exponential lower bound on the complexity of depth 3 arithmetic circuits computing some explicit functions f: (F*)(n) --> F (in particular, the determinant of a matrix).
引用
收藏
页码:465 / 487
页数:23
相关论文
共 50 条
  • [21] Recent progress on lower bounds for arithmetic circuits
    Saraf, Shubhangi
    2014 IEEE 29TH CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2014, : 155 - 160
  • [22] Arithmetic cohomology over finite fields and special values of ζ-functions
    Geisser, Thomas
    DUKE MATHEMATICAL JOURNAL, 2006, 133 (01) : 27 - 57
  • [23] Lower bounds on the depth of monotone arithmetic computations
    Coppersmith, D
    Schieber, B
    JOURNAL OF COMPLEXITY, 1999, 15 (01) : 17 - 29
  • [24] Arithmetic Circuits, Monomial Algebras and Finite Automata
    Arvind, Vikraman
    Joglekar, Pushkar S.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2009, 2009, 5734 : 78 - 89
  • [25] Lower Bounds of Complexity for Polarized Polynomials over Finite Fields
    A. S. Baliuk
    A. S. Zinchenko
    Siberian Mathematical Journal, 2019, 60 : 1 - 9
  • [26] LOWER BOUNDS OF COMPLEXITY FOR POLARIZED POLYNOMIALS OVER FINITE FIELDS
    Baliuk, A. S.
    Zinchenko, A. S.
    SIBERIAN MATHEMATICAL JOURNAL, 2019, 60 (01) : 1 - 9
  • [27] Log-Concavity and Lower Bounds for Arithmetic Circuits
    Garcia-Marcos, Ignacio
    Koiran, Pascal
    Tavenas, Sebastien
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2015, PT II, 2015, 9235 : 361 - 371
  • [28] Lower Bounds for Arithmetic Circuits via the Hankel Matrix
    Fijalkow, Nathanael
    Lagarde, Guillaume
    Ohlmann, Pierre
    Serre, Olivier
    COMPUTATIONAL COMPLEXITY, 2021, 30 (02)
  • [29] Lower Bounds for Arithmetic Circuits via the Hankel Matrix
    Fijalkow, Nathanael
    Lagarde, Guillaume
    Ohlmann, Pierre
    Serre, Olivier
    37TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2020), 2020, 154
  • [30] Lower bounds on arithmetic circuits via partial derivatives
    Nisan, N
    Wigderson, A
    COMPUTATIONAL COMPLEXITY, 1997, 6 (03) : 217 - 234