A Comparison of the Maximum Entropy Principle Across Biological Spatial Scales

被引:12
|
作者
Cofre, Rodrigo [1 ]
Herzog, Ruben [2 ]
Corcoran, Derek [3 ,4 ]
Rosas, Fernando E. [5 ,6 ,7 ,8 ]
机构
[1] Univ Valparaiso, Fac Ingn, Ctr Invest & Modelamiento Fenomenos Aleatorios CI, Valparaiso 2340000, Chile
[2] Univ Valparaiso, Ctr Interdisciplinario Neurociencia Valparaiso, Valparaiso 2340000, Chile
[3] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Ecol, Santiago 8331150, Chile
[4] Inst Ecol & Biodiversidad, Santiago 8331150, Chile
[5] Imperial Coll London, Ctr Psychedel Res, Dept Med, London SW7 2DD, England
[6] Imperial Coll London, Data Sci Inst, London SW7 2AZ, England
[7] Imperial Coll London, Ctr Complex Sci, London SW7 2AZ, England
[8] Imperial Coll London, Dept Math, London SW7 2AZ, England
关键词
maximum entropy principle; biological systems across scales; model-free data analysis; inverse problems; STATISTICAL-MECHANICS; TEMPORAL CORRELATIONS; PLANT-COMMUNITIES; R PACKAGE; NETWORK; INFORMATION; CONSTRAINTS; ABUNDANCE; CONTACTS; TRAITS;
D O I
10.3390/e21101009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Despite their differences, biological systems at different spatial scales tend to exhibit common organizational patterns. Unfortunately, these commonalities are often hard to grasp due to the highly specialized nature of modern science and the parcelled terminology employed by various scientific sub-disciplines. To explore these common organizational features, this paper provides a comparative study of diverse applications of the maximum entropy principle, which has found many uses at different biological spatial scales ranging from amino acids up to societies. By presenting these studies under a common approach and language, this paper aims to establish a unified view over these seemingly highly heterogeneous scenarios.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] GENERALIZED MAXIMUM-ENTROPY PRINCIPLE
    THOMAS, MU
    OPERATIONS RESEARCH, 1979, 27 (06) : 1188 - 1196
  • [42] IMPLICATIONS OF THE ENTROPY MAXIMUM PRINCIPLE - COMMENT
    DUNNINGDAVIES, J
    AMERICAN JOURNAL OF PHYSICS, 1993, 61 (01) : 88 - 89
  • [43] Maximum Entropy Principle in Image Restoration
    Petrovici, Mihai-Alexandra
    Damian, Cristian
    Coltuc, Daniela
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2018, 18 (02) : 77 - 84
  • [44] The maximum entropy principle in decision theory
    Prokaev, A. N.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2024, 20 (02): : 154 - 169
  • [45] The maximum entropy principle: A critical discussion
    Caldeira, Ken
    CLIMATIC CHANGE, 2007, 85 (3-4) : 267 - 269
  • [46] Maximum Entropy principle and the nature of fractals
    Universitat de Barcelona, Barcelona, Spain
    Phys A Stat Theor Phys, 3-4 (291-302):
  • [47] On estimating distributions with the maximum entropy principle
    Zhigunov, V.P.
    Kostkina, T.B.
    Spiridonov, A.A.
    Nuclear instruments and methods in physics research, 1988, 273 (01): : 362 - 370
  • [48] The maximum entropy principle for compositional data
    Corey Weistuch
    Jiening Zhu
    Joseph O. Deasy
    Allen R. Tannenbaum
    BMC Bioinformatics, 23
  • [49] Maximum entropy principle and the logistic model
    Leblanc, R
    Shapiro, S
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 1999, 7 (01) : 51 - 62
  • [50] Maximum entropy principle for fuzzy variables
    Li, Xiang
    Liu, Baoding
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2007, 15 (02) : 43 - 52