A Comparison of the Maximum Entropy Principle Across Biological Spatial Scales

被引:12
|
作者
Cofre, Rodrigo [1 ]
Herzog, Ruben [2 ]
Corcoran, Derek [3 ,4 ]
Rosas, Fernando E. [5 ,6 ,7 ,8 ]
机构
[1] Univ Valparaiso, Fac Ingn, Ctr Invest & Modelamiento Fenomenos Aleatorios CI, Valparaiso 2340000, Chile
[2] Univ Valparaiso, Ctr Interdisciplinario Neurociencia Valparaiso, Valparaiso 2340000, Chile
[3] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Ecol, Santiago 8331150, Chile
[4] Inst Ecol & Biodiversidad, Santiago 8331150, Chile
[5] Imperial Coll London, Ctr Psychedel Res, Dept Med, London SW7 2DD, England
[6] Imperial Coll London, Data Sci Inst, London SW7 2AZ, England
[7] Imperial Coll London, Ctr Complex Sci, London SW7 2AZ, England
[8] Imperial Coll London, Dept Math, London SW7 2AZ, England
关键词
maximum entropy principle; biological systems across scales; model-free data analysis; inverse problems; STATISTICAL-MECHANICS; TEMPORAL CORRELATIONS; PLANT-COMMUNITIES; R PACKAGE; NETWORK; INFORMATION; CONSTRAINTS; ABUNDANCE; CONTACTS; TRAITS;
D O I
10.3390/e21101009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Despite their differences, biological systems at different spatial scales tend to exhibit common organizational patterns. Unfortunately, these commonalities are often hard to grasp due to the highly specialized nature of modern science and the parcelled terminology employed by various scientific sub-disciplines. To explore these common organizational features, this paper provides a comparative study of diverse applications of the maximum entropy principle, which has found many uses at different biological spatial scales ranging from amino acids up to societies. By presenting these studies under a common approach and language, this paper aims to establish a unified view over these seemingly highly heterogeneous scenarios.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Biological Connectivity of Seasonally Ponded Wetlands across Spatial and Temporal Scales
    Smith, L. L.
    Subalusky, A. L.
    Atkinson, C. L.
    Earl, J. E.
    Mushet, D. M.
    Scott, D. E.
    Lance, S. L.
    Johnson, S. A.
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2019, 55 (02): : 334 - 353
  • [22] THE MAXIMUM-ENTROPY PRINCIPLE AS A CONSEQUENCE OF THE PRINCIPLE OF LAPLACE
    HADJISAVVAS, N
    JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (04) : 807 - 815
  • [23] MATHEMATICAL ENTROPY AND A CRITICISM OF A USAGE OF THE PRINCIPLE OF MAXIMUM ENTROPY
    Willink, Robin
    ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY AND TESTING VIII, 2009, 78 : 357 - 360
  • [24] ANALYSIS OF MAXIMUM ENTROPY PRINCIPLE DEBATE
    CYRANSKI, JF
    FOUNDATIONS OF PHYSICS, 1978, 8 (5-6) : 493 - 506
  • [25] Research on Principle and Application of Maximum Entropy
    Wu, Boya
    Yi, Junyan
    Yong, Qiaoling
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 2571 - 2576
  • [26] The maximum entropy principle and algorithmic randomness
    Maslov, VP
    V'yugin, VV
    DOKLADY MATHEMATICS, 2004, 70 (02) : 682 - 685
  • [27] Probability distributions and the maximum entropy principle
    Villa-Morales, Jose
    Rincon, Luis
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 444
  • [28] Maximum entropy principle and texture formation
    Arminjon, M
    Imbault, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S13 - S16
  • [29] On an Objective Basis for the Maximum Entropy Principle
    Miller, David J.
    Soleimani, Hossein
    ENTROPY, 2015, 17 (01): : 401 - 406
  • [30] A NOTE ON THE MAXIMUM-ENTROPY PRINCIPLE
    JUPP, PE
    MARDIA, KV
    SCANDINAVIAN JOURNAL OF STATISTICS, 1983, 10 (01) : 45 - 47