A Comparison of the Maximum Entropy Principle Across Biological Spatial Scales

被引:12
|
作者
Cofre, Rodrigo [1 ]
Herzog, Ruben [2 ]
Corcoran, Derek [3 ,4 ]
Rosas, Fernando E. [5 ,6 ,7 ,8 ]
机构
[1] Univ Valparaiso, Fac Ingn, Ctr Invest & Modelamiento Fenomenos Aleatorios CI, Valparaiso 2340000, Chile
[2] Univ Valparaiso, Ctr Interdisciplinario Neurociencia Valparaiso, Valparaiso 2340000, Chile
[3] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Ecol, Santiago 8331150, Chile
[4] Inst Ecol & Biodiversidad, Santiago 8331150, Chile
[5] Imperial Coll London, Ctr Psychedel Res, Dept Med, London SW7 2DD, England
[6] Imperial Coll London, Data Sci Inst, London SW7 2AZ, England
[7] Imperial Coll London, Ctr Complex Sci, London SW7 2AZ, England
[8] Imperial Coll London, Dept Math, London SW7 2AZ, England
关键词
maximum entropy principle; biological systems across scales; model-free data analysis; inverse problems; STATISTICAL-MECHANICS; TEMPORAL CORRELATIONS; PLANT-COMMUNITIES; R PACKAGE; NETWORK; INFORMATION; CONSTRAINTS; ABUNDANCE; CONTACTS; TRAITS;
D O I
10.3390/e21101009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Despite their differences, biological systems at different spatial scales tend to exhibit common organizational patterns. Unfortunately, these commonalities are often hard to grasp due to the highly specialized nature of modern science and the parcelled terminology employed by various scientific sub-disciplines. To explore these common organizational features, this paper provides a comparative study of diverse applications of the maximum entropy principle, which has found many uses at different biological spatial scales ranging from amino acids up to societies. By presenting these studies under a common approach and language, this paper aims to establish a unified view over these seemingly highly heterogeneous scenarios.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Maximum Entropy Principle for Uncertain Variables
    Chen, Xiaowei
    Dai, Wei
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2011, 13 (03) : 232 - 236
  • [32] Compositional models and maximum entropy principle
    Jirousek, Radim
    Malec, Miroslav
    PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2007, 6 : 589 - 595
  • [33] The restrictions of the maximum entropy production principle
    Martyushev, L. M.
    Seleznev, V. D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 410 : 17 - 21
  • [34] The maximum entropy principle and the nature of fractals
    Pastor-Satorras, R
    Wagensberg, J
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1998, 251 (3-4) : 291 - 302
  • [35] Numerical taxonomy and the principle of maximum entropy
    Gyllenberg, M
    Koski, T
    JOURNAL OF CLASSIFICATION, 1996, 13 (02) : 213 - 229
  • [36] Statistics and quantum maximum entropy principle
    Trovato, M.
    Reggiani, L.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2010, 33 (01): : 247 - 255
  • [37] THE GENERALIZED MAXIMUM-ENTROPY PRINCIPLE
    KESAVAN, HK
    KAPUR, JN
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (05): : 1042 - 1052
  • [38] Maximum entropy principle and the logistic model
    Leblanc, Raymond
    Shapiro, Stanley
    International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 1999, 7 (01): : 51 - 62
  • [39] The maximum entropy principle for compositional data
    Weistuch, Corey
    Zhu, Jiening
    Deasy, Joseph O.
    Tannenbaum, Allen R.
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [40] The maximum entropy principle in search theory
    Prokaev, A. N.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2023, 19 (01): : 27 - 42