A Comparison of the Maximum Entropy Principle Across Biological Spatial Scales

被引:12
|
作者
Cofre, Rodrigo [1 ]
Herzog, Ruben [2 ]
Corcoran, Derek [3 ,4 ]
Rosas, Fernando E. [5 ,6 ,7 ,8 ]
机构
[1] Univ Valparaiso, Fac Ingn, Ctr Invest & Modelamiento Fenomenos Aleatorios CI, Valparaiso 2340000, Chile
[2] Univ Valparaiso, Ctr Interdisciplinario Neurociencia Valparaiso, Valparaiso 2340000, Chile
[3] Pontificia Univ Catolica Chile, Fac Ciencias Biol, Dept Ecol, Santiago 8331150, Chile
[4] Inst Ecol & Biodiversidad, Santiago 8331150, Chile
[5] Imperial Coll London, Ctr Psychedel Res, Dept Med, London SW7 2DD, England
[6] Imperial Coll London, Data Sci Inst, London SW7 2AZ, England
[7] Imperial Coll London, Ctr Complex Sci, London SW7 2AZ, England
[8] Imperial Coll London, Dept Math, London SW7 2AZ, England
关键词
maximum entropy principle; biological systems across scales; model-free data analysis; inverse problems; STATISTICAL-MECHANICS; TEMPORAL CORRELATIONS; PLANT-COMMUNITIES; R PACKAGE; NETWORK; INFORMATION; CONSTRAINTS; ABUNDANCE; CONTACTS; TRAITS;
D O I
10.3390/e21101009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Despite their differences, biological systems at different spatial scales tend to exhibit common organizational patterns. Unfortunately, these commonalities are often hard to grasp due to the highly specialized nature of modern science and the parcelled terminology employed by various scientific sub-disciplines. To explore these common organizational features, this paper provides a comparative study of diverse applications of the maximum entropy principle, which has found many uses at different biological spatial scales ranging from amino acids up to societies. By presenting these studies under a common approach and language, this paper aims to establish a unified view over these seemingly highly heterogeneous scenarios.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Maximum entropy principle revisited
    Dreyer, W
    Kunik, M
    CONTINUUM MECHANICS AND THERMODYNAMICS, 1998, 10 (06) : 331 - 347
  • [2] The latent maximum entropy principle
    Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, United States
    不详
    不详
    ACM Trans. Knowl. Discov. Data, 2
  • [3] The principle of the maximum entropy method
    Sakata, M
    Takata, M
    HIGH PRESSURE RESEARCH, 1996, 14 (4-6) : 327 - 333
  • [4] MAXIMUM-ENTROPY PRINCIPLE
    BALASUBRAMANIAN, V
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 1984, 35 (03): : 153 - 153
  • [5] THE MAXIMUM-ENTROPY PRINCIPLE
    FELLGETT, PB
    KYBERNETES, 1987, 16 (02) : 125 - 125
  • [6] MAXIMUM ENTROPY PRINCIPLE FOR TRANSPORTATION
    Bilich, F.
    DaSilva, R.
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2008, 1073 : 252 - +
  • [7] The Latent Maximum Entropy Principle
    Wang, Shaojun
    Schuurmans, Dale
    Zhao, Yunxin
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2012, 6 (02)
  • [8] Generalized maximum entropy principle
    Kesavan, H.K., 1600, (19):
  • [9] THE PRINCIPLE OF MAXIMUM-ENTROPY
    GUIASU, S
    SHENITZER, A
    MATHEMATICAL INTELLIGENCER, 1985, 7 (01): : 42 - 48
  • [10] Metasystems and the maximum entropy principle
    Pittarelli, M
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 1996, 24 (1-2) : 191 - 206