Stability of deep water waves governed by the Benjamin-Ono equation

被引:0
|
作者
Infeld, E
Rowlands, G
机构
[1] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.12693/APhysPolA.103.365
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Benjamin-Ono equation models the dynamics of internal waves in stratified fluids of great depth. It includes an integral (Hilbert transform) term, and so stability calculations might seem difficult. We expand in both the amplitude of the nonlinear wave and the wave vector of the perturbation, assumed to be small quantities of the same order. An expression for the nonlinear dispersion relation is obtained. Nonlinear periodic Benjamin-Ono waves are stable, just as the localized, algebraic soliton solutions (Lorentzians), already known to be stable. (This also follows as a limit of our calculations.) We extend the known analogy between the Benjamin-Ono and modified Korteweg-de Vries equations. PACS numbers: 47.20.Ky, 52.35.Py.
引用
收藏
页码:365 / 371
页数:7
相关论文
共 50 条
  • [21] Perturbation theory for the Benjamin-Ono equation
    Kaup, DJ
    Lakoba, TI
    Matsuno, Y
    INVERSE PROBLEMS, 1999, 15 (01) : 215 - 240
  • [22] Spin generalizations of the Benjamin-Ono equation
    Berntson, Bjorn K.
    Langmann, Edwin
    Lenells, Jonatan
    arXiv, 2022,
  • [23] An explicit formula for the Benjamin-Ono equation
    Gerard, Patrick
    TUNISIAN JOURNAL OF MATHEMATICS, 2023, 5 (03) : 593 - 603
  • [24] A numerical method for the Benjamin-Ono equation
    Thomee, V
    Murthy, ASV
    BIT, 1998, 38 (03): : 597 - 611
  • [25] MEROMORPHIC SOLUTIONS OF THE BENJAMIN-ONO EQUATION
    CASE, KM
    PHYSICA A, 1979, 96 (1-2): : 173 - 182
  • [26] Lie symmetries of Benjamin-Ono equation
    Zhao, Weidong
    Munir, Mobeen
    Murtaza, Ghulam
    Athar, Muhammad
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (06) : 9496 - 9510
  • [27] On the new extensions to the Benjamin-Ono equation
    Ali, Khalid Karam
    Nuruddeen, Rahmatullah Ibrahim
    Yildirim, Ahmet
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (03): : 424 - 445
  • [28] A note on a Benjamin-Ono type equation
    Yuan, Zhen
    Ma, Feiyao
    Wo, Weifeng
    MONATSHEFTE FUR MATHEMATIK, 2025,
  • [29] A numerical method for the Benjamin-Ono equation
    V. Thomée
    A. S. Vasudeva Murthy
    BIT Numerical Mathematics, 1998, 38 : 597 - 611
  • [30] Symmetry algebra of the Benjamin-Ono equation
    Chetverikov, VN
    ACTA APPLICANDAE MATHEMATICAE, 1999, 56 (2-3) : 121 - 138