The Benjamin-Ono equation models the dynamics of internal waves in stratified fluids of great depth. It includes an integral (Hilbert transform) term, and so stability calculations might seem difficult. We expand in both the amplitude of the nonlinear wave and the wave vector of the perturbation, assumed to be small quantities of the same order. An expression for the nonlinear dispersion relation is obtained. Nonlinear periodic Benjamin-Ono waves are stable, just as the localized, algebraic soliton solutions (Lorentzians), already known to be stable. (This also follows as a limit of our calculations.) We extend the known analogy between the Benjamin-Ono and modified Korteweg-de Vries equations. PACS numbers: 47.20.Ky, 52.35.Py.
机构:
Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay,91405, FranceLaboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay,91405, France
Gérard, Patrick
Kappeler, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, Zurich,8057, SwitzerlandLaboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay,91405, France
Kappeler, Thomas
Topalov, Petar
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Northeastern University, 567 la (Lake Hall), Boston,MA,0215, United StatesLaboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay,91405, France
机构:
N China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R ChinaN China Elect Power Univ, Dept Math & Phys, Beijing 102206, Peoples R China