A Deep Mixture Density Network for On-Demand Inverse Design of Thin Film Reflectors

被引:0
|
作者
Unni, Rohit [1 ,2 ]
Yao, Kan [1 ,2 ]
Zheng, Yuebing [1 ,2 ]
机构
[1] Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report a mixture density neural network trained for on-demand inverse design of thin film reflectors, able to retrieve accurate designs and independently reproduce conventional design methods based on physical principles. (c) 2021 The Author(s)
引用
收藏
页数:2
相关论文
共 50 条
  • [31] Experimental implementation of a new control approach using an inverse neural network to on-demand hydrogen production
    Cervantes-Bobadilla, M.
    Garcia-Morales, J.
    Escobar-Jimenez, R. F.
    Hernandez-Perez, J. A.
    Gomez-Aguilar, J. F.
    Olivares-Peregrino, V. H.
    CONTROL ENGINEERING PRACTICE, 2020, 105 (105)
  • [32] Probabilistic inverse design of metasurfaces using mixture density neural networks
    Torfeh, Mahsa
    Hsu, Chia Wei
    JOURNAL OF PHYSICS-PHOTONICS, 2025, 7 (01):
  • [33] Inverse Design of Graphene FET by Deep Neural Network
    Seo, Gyeong Min
    Baek, Chang-Ki
    Kong, Byoung Don
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE NANO 2021), 2021, : 134 - 137
  • [34] On-demand design of spectrally sensitive multiband absorbers using an artificial neural network
    SUNAE SO
    YOUNGHWAN YANG
    TAEJUN LEE
    JUNSUK RHO
    Photonics Research, 2021, (04) : 153 - 158
  • [35] Design of Multimedia On-Demand Client Based on Big Data and Computer Network Technology
    He, Zhengling
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON MANAGEMENT AND COMPUTER SCIENCE (ICMCS 2018), 2018, 77 : 716 - 721
  • [36] On-demand pressurized water distribution system impacts on sprinkler network design and performance
    Andre Daccache
    N. Lamaddalena
    U. Fratino
    Irrigation Science, 2010, 28 : 331 - 339
  • [37] An On-Demand Inverse Design Method for Nanophotonic Devices Based on Generative Model and Hybrid Optimization Algorithm
    Zhu, Lu
    Li, Yue
    Yang, Zhikang
    Zong, Danlong
    Liu, Yuanyuan
    PLASMONICS, 2024, 19 (03) : 1279 - 1290
  • [38] Edge AI: On-Demand Accelerating Deep Neural Network Inference via Edge Computing
    Li, En
    Zeng, Liekang
    Zhou, Zhi
    Chen, Xu
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (01) : 447 - 457
  • [39] On-demand pressurized water distribution system impacts on sprinkler network design and performance
    Daccache, Andre
    Lamaddalena, N.
    Fratino, U.
    IRRIGATION SCIENCE, 2010, 28 (04) : 331 - 339
  • [40] On-demand design of spectrally sensitive multiband absorbers using an artificial neural network
    So, Sunae
    Yang, Younghwan
    Lee, Taejun
    Rho, Junsuk
    PHOTONICS RESEARCH, 2021, 9 (04) : B153 - B158