Probabilistic inverse design of metasurfaces using mixture density neural networks

被引:0
|
作者
Torfeh, Mahsa [1 ]
Hsu, Chia Wei [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
来源
JOURNAL OF PHYSICS-PHOTONICS | 2025年 / 7卷 / 01期
基金
美国国家科学基金会;
关键词
Nanophotonics; metasurface; inverse design; deep neural network; mixture density network; structured light; TOPOLOGY OPTIMIZATION; POLARIZATION; PHASE;
D O I
10.1088/2515-7647/ad9b82
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metasurfaces are planar sub-micron structures that can outperform traditional optical elements and miniaturize optical devices. Optimization-based inverse designs of metasurfaces often get trapped in a local minimum, and the inherent non-uniqueness property of the inverse problem plagues approaches based on conventional neural networks. Here, we use mixture density neural networks to overcome the non-uniqueness issue for the design of metasurfaces. Once trained, the mixture density network (MDN) can predict a probability distribution of different optimal structures given any desired property as the input, without resorting to an iterative local optimization. As an example, we use the MDN to design metasurfaces that project structured light patterns with varying fields of view. This approach enables an efficient and reliable inverse design of fabrication-ready metasurfaces with complex functionalities without getting trapped in local optima.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Inverse design of broadband highly reflective metasurfaces using neural networks
    Harper, Eric S.
    Coyle, Eleanor J.
    Vernon, Jonathan P.
    Mills, Matthew S.
    PHYSICAL REVIEW B, 2020, 101 (19)
  • [2] Inverse design of polarization conversion metasurfaces by deep neural networks
    Chen, Wanglei
    Li, Runkun
    Huang, Zetian
    Wu, Hao
    Wei, Jingyang
    Wang, Shu
    Wang, Le
    Li, Yanghui
    APPLIED OPTICS, 2023, 62 (08) : 2048 - 2054
  • [3] Dynamic Inverse Design of Broadband Metasurfaces with Synthetical Neural Networks
    Jia, Yuetian
    Fan, Zhixiang
    Qian, Chao
    del Hougne, Philipp
    Chen, Hongsheng
    LASER & PHOTONICS REVIEWS, 2024, 18 (10)
  • [4] Neural networks enabled forward and inverse design of reconfigurable metasurfaces
    Tanriover, Ibrahim
    Hadibrata, Wisnu
    Scheuer, Jacob
    Aydin, Koray
    OPTICS EXPRESS, 2021, 29 (17) : 27219 - 27227
  • [5] Simulator-based training of generative neural networks for the inverse design of metasurfaces
    Jiang, Jiaqi
    Fan, Jonathan A.
    NANOPHOTONICS, 2020, 9 (05) : 1059 - 1069
  • [6] Inverse Design of Bifunctional Metasurfaces Using Improved Generative Adversarial Networks
    Liu, Xiaosong
    Cao, Xianbo
    Hong, Tao
    Jiang, Wen
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2025, 24 (03): : 582 - 586
  • [7] Inverse design of generic metasurfaces for multifunctional wavefront shaping based on deep neural networks
    Cheng, Jierong
    Li, Runze
    Wang, Yu
    Yuan, Yiwu
    Wang, Xianghui
    Chang, Shengjiang
    OPTICS AND LASER TECHNOLOGY, 2023, 159
  • [8] Inverse design of plasmonic metasurfaces by convolutional neural network
    Lin, Ronghui
    Zhai, Yanfen
    Xiong, Chenxin
    Li, Xiaohang
    OPTICS LETTERS, 2020, 45 (06) : 1362 - 1365
  • [9] Probabilistic inversion of seafloor compliance for oceanic crustal shear velocity structure using mixture density neural networks
    Mosher, S. G.
    Eilon, Z.
    Janiszewski, H.
    Audet, P.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 227 (03) : 1879 - 1892
  • [10] High-energy density hohlraum design using forward and inverse deep neural networks
    McClarren, Ryan G.
    Tregillis, I. L.
    Urbatsch, Todd J.
    Dodd, E. S.
    PHYSICS LETTERS A, 2021, 396