Probabilistic inverse design of metasurfaces using mixture density neural networks

被引:0
|
作者
Torfeh, Mahsa [1 ]
Hsu, Chia Wei [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
来源
JOURNAL OF PHYSICS-PHOTONICS | 2025年 / 7卷 / 01期
基金
美国国家科学基金会;
关键词
Nanophotonics; metasurface; inverse design; deep neural network; mixture density network; structured light; TOPOLOGY OPTIMIZATION; POLARIZATION; PHASE;
D O I
10.1088/2515-7647/ad9b82
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metasurfaces are planar sub-micron structures that can outperform traditional optical elements and miniaturize optical devices. Optimization-based inverse designs of metasurfaces often get trapped in a local minimum, and the inherent non-uniqueness property of the inverse problem plagues approaches based on conventional neural networks. Here, we use mixture density neural networks to overcome the non-uniqueness issue for the design of metasurfaces. Once trained, the mixture density network (MDN) can predict a probability distribution of different optimal structures given any desired property as the input, without resorting to an iterative local optimization. As an example, we use the MDN to design metasurfaces that project structured light patterns with varying fields of view. This approach enables an efficient and reliable inverse design of fabrication-ready metasurfaces with complex functionalities without getting trapped in local optima.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Optimizing the design of birefringent metasurfaces with deep learning neural networks
    Xu, Athena
    Semnani, Behrooz
    Houk, Anna Maria
    Soltani, Mohammad
    Treacy, Jacqueline
    Bajcsy, Michal
    PHOTONIC AND PHONONIC PROPERTIES OF ENGINEERED NANOSTRUCTURES XIV, 2024, 12896
  • [32] Probabilistic Intraday PV Power Forecast Using Ensembles of Deep Gaussian Mixture Density Networks
    Doelle, Oliver
    Klinkenberg, Nico
    Amthor, Arvid
    Ament, Christoph
    ENERGIES, 2023, 16 (02)
  • [33] Probabilistic dose prediction using mixture density networks for automated radiation therapy treatment planning
    Nilsson, Viktor
    Gruselius, Hanna
    Zhang, Tianfang
    De Kerf, Geert
    Claessens, Michael
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (05):
  • [34] Neural networks for inverse design of phononic crystals
    Liu, Chen-Xu
    Yu, Gui-Lan
    Zhao, Guan-Yuan
    AIP ADVANCES, 2019, 9 (08)
  • [35] Constrained tandem neural network assisted inverse design of metasurfaces for microwave absorption
    He, Xiangxu
    Cui, Xiaohan
    Chan, C. T.
    OPTICS EXPRESS, 2023, 31 (24) : 40969 - 40979
  • [36] Stochastic loss reserving with mixture density neural networks
    Al-Mudafer, Muhammed Taher
    Avanzi, Benjamin
    Taylor, Greg
    Wong, Bernard
    INSURANCE MATHEMATICS & ECONOMICS, 2022, 105 : 144 - 174
  • [37] Neural-adjoint method for the inverse design of all-dielectric metasurfaces
    Deng, Yang
    Ren, Simiao
    Fan, Kebin
    Malof, Jordan M.
    Padilla, Willie J.
    OPTICS EXPRESS, 2021, 29 (05) : 7526 - 7534
  • [38] Probabilistic electric load forecasting through Bayesian Mixture Density Networks
    Brusaferri, Alessandro
    Matteucci, Matteo
    Spinelli, Stefano
    Vitali, Andrea
    APPLIED ENERGY, 2022, 309
  • [39] Inverse design of waveguide grating mode converters using artificial neural networks
    Hejazi, Ali Mohajer
    Ginis, Vincent
    JOURNAL OF OPTICS, 2025, 27 (04)
  • [40] Generative Inverse Design of Aerodynamic Shapes Using Conditional Invertible Neural Networks
    Warey, Alok
    Raul, Vishal
    Kaushik, Shailendra
    Han, Taeyoung
    Chakravarty, Rajan
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2023, 23 (03)