Probabilistic inverse design of metasurfaces using mixture density neural networks

被引:0
|
作者
Torfeh, Mahsa [1 ]
Hsu, Chia Wei [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
来源
JOURNAL OF PHYSICS-PHOTONICS | 2025年 / 7卷 / 01期
基金
美国国家科学基金会;
关键词
Nanophotonics; metasurface; inverse design; deep neural network; mixture density network; structured light; TOPOLOGY OPTIMIZATION; POLARIZATION; PHASE;
D O I
10.1088/2515-7647/ad9b82
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metasurfaces are planar sub-micron structures that can outperform traditional optical elements and miniaturize optical devices. Optimization-based inverse designs of metasurfaces often get trapped in a local minimum, and the inherent non-uniqueness property of the inverse problem plagues approaches based on conventional neural networks. Here, we use mixture density neural networks to overcome the non-uniqueness issue for the design of metasurfaces. Once trained, the mixture density network (MDN) can predict a probability distribution of different optimal structures given any desired property as the input, without resorting to an iterative local optimization. As an example, we use the MDN to design metasurfaces that project structured light patterns with varying fields of view. This approach enables an efficient and reliable inverse design of fabrication-ready metasurfaces with complex functionalities without getting trapped in local optima.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Inverse design of colored daytime radiative coolers using deep neural networks
    Keawmuang, Harit
    Badloe, Trevon
    Lee, Chihun
    Park, Junkyeong
    Rho, Junsuk
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 271
  • [42] Generative Model for the Inverse Design of Metasurfaces
    Liu, Zhaocheng
    Zhu, Dayu
    Rodrigues, Sean P.
    Lee, Kyu-Tae
    Cai, Wenshan
    NANO LETTERS, 2018, 18 (10) : 6570 - 6576
  • [43] Feature Selection Using Probabilistic Neural Networks
    A. Hunter
    Neural Computing & Applications, 2000, 9 : 124 - 132
  • [44] Cloud detection using probabilistic neural networks
    Zhang, WD
    He, MX
    Mak, MW
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 2373 - 2375
  • [45] Feature selection using probabilistic neural networks
    Hunter, A
    NEURAL COMPUTING & APPLICATIONS, 2000, 9 (02): : 124 - 132
  • [46] Probabilistic visibility forecasting using neural networks
    Bremnes, John Bjornar
    Michaelides, Silas Chr.
    PURE AND APPLIED GEOPHYSICS, 2007, 164 (6-7) : 1365 - 1381
  • [47] Probabilistic Visibility Forecasting Using Neural Networks
    John Bjørnar Bremnes
    Silas Chr. Michaelides
    Pure and Applied Geophysics, 2007, 164 : 1365 - 1381
  • [48] Face Recognition using Probabilistic Neural Networks
    Vinitha, K. V.
    Kumar, G. Santhosh
    2009 WORLD CONGRESS ON NATURE & BIOLOGICALLY INSPIRED COMPUTING (NABIC 2009), 2009, : 1387 - 1392
  • [49] Inverse design of acoustic metasurfaces using space-filling points
    Krishna, Arvind
    Craig, Steven R.
    Shi, Chengzhi
    Joseph, V. Roshan
    APPLIED PHYSICS LETTERS, 2022, 121 (07)
  • [50] Probabilistic invertible neural network for inverse design space exploration and reasoning
    Zhang, Yiming
    Pan, Zhiwei
    Zhang, Shuyou
    Qiu, Na
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (02): : 860 - 881