Probabilistic inverse design of metasurfaces using mixture density neural networks

被引:0
|
作者
Torfeh, Mahsa [1 ]
Hsu, Chia Wei [1 ]
机构
[1] Univ Southern Calif, Ming Hsieh Dept Elect & Comp Engn, Los Angeles, CA 90089 USA
来源
JOURNAL OF PHYSICS-PHOTONICS | 2025年 / 7卷 / 01期
基金
美国国家科学基金会;
关键词
Nanophotonics; metasurface; inverse design; deep neural network; mixture density network; structured light; TOPOLOGY OPTIMIZATION; POLARIZATION; PHASE;
D O I
10.1088/2515-7647/ad9b82
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Metasurfaces are planar sub-micron structures that can outperform traditional optical elements and miniaturize optical devices. Optimization-based inverse designs of metasurfaces often get trapped in a local minimum, and the inherent non-uniqueness property of the inverse problem plagues approaches based on conventional neural networks. Here, we use mixture density neural networks to overcome the non-uniqueness issue for the design of metasurfaces. Once trained, the mixture density network (MDN) can predict a probability distribution of different optimal structures given any desired property as the input, without resorting to an iterative local optimization. As an example, we use the MDN to design metasurfaces that project structured light patterns with varying fields of view. This approach enables an efficient and reliable inverse design of fabrication-ready metasurfaces with complex functionalities without getting trapped in local optima.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Pulp quality modelling using Bayesian mixture density neural networks
    Orre, R
    Lansner, A
    JOURNAL OF SYSTEMS ENGINEERING, 1996, 6 (03): : 128 - 136
  • [22] Synthesizing and Imitating Handwriting using Deep Recurrent Neural Networks and Mixture Density Networks
    Kumar, K. Manoj
    Kandala, Harish
    Reddy, N. Sudhakar
    2018 9TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2018,
  • [23] PROBABILISTIC FATIGUE DATA ANALYSIS USING PHYSICS-GUIDED MIXTURE DENSITY NETWORKS
    Chen, Jie
    Liu, Yongming
    PROCEEDINGS OF ASME 2023 AEROSPACE STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE, SSDM2023, 2023,
  • [24] Neural network-based surrogate model for inverse design of metasurfaces
    Jing, Guoqing
    Wang, Peipei
    Wu, Haisheng
    Ren, Jianjun
    Xie, Zhiqiang
    Liu, Junmin
    Ye, Huapeng
    Li, Ying
    Fan, Dianyuan
    Chen, Shuqing
    PHOTONICS RESEARCH, 2022, 10 (06) : 1462 - 1471
  • [25] Determination of probabilistic parameters of concrete: solving the inverse problem by using artificial neural networks
    Fairbairn, EMR
    Ebecken, NFF
    Paz, CNM
    Ulm, FJ
    COMPUTERS & STRUCTURES, 2000, 78 (1-3) : 497 - 503
  • [26] Neural network-based surrogate model for inverse design of metasurfaces
    GUOQING JING
    PEIPEI WANG
    HAISHENG WU
    JIANJUN REN
    ZHIQIANG XIE
    JUNMIN LIU
    HUAPENG YE
    YING LI
    DIANYUAN FAN
    SHUQING CHEN
    Photonics Research, 2022, 10 (06) : 1462 - 1471
  • [27] Probabilistic rotation modeling based on directional mixture density networks
    Zeng, Lidan
    Fan, Wentao
    Bouguila, Nizar
    INFORMATION SCIENCES, 2024, 662
  • [28] Nanophotonic particle simulation and inverse design using artificial neural networks
    Peurifoy, John
    Shen, Yichen
    Jing, Li
    Yang, Yi
    Cano-Renteria, Fidel
    DeLacy, Brendan G.
    Joannopoulos, John D.
    Tegmark, Max
    Soljacic, Marin
    SCIENCE ADVANCES, 2018, 4 (06):
  • [29] Nanophotonic Particle Simulation and Inverse Design Using Artificial Neural Networks
    Peurifoy, John
    Shen, Yichen
    Jing, Li
    Yang, Yi
    Cano-Renteria, Fidel
    Delacy, Brendan
    Tegmark, Max
    Joannopoulos, John D.
    Soljaclc, Marin
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXVI, 2018, 10526
  • [30] Prediction of two-phase mixture density using artificial neural networks
    Lombardi, C
    Mazzola, A
    ANNALS OF NUCLEAR ENERGY, 1997, 24 (17) : 1373 - 1387