A Deep Mixture Density Network for On-Demand Inverse Design of Thin Film Reflectors

被引:0
|
作者
Unni, Rohit [1 ,2 ]
Yao, Kan [1 ,2 ]
Zheng, Yuebing [1 ,2 ]
机构
[1] Univ Texas Austin, Walker Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report a mixture density neural network trained for on-demand inverse design of thin film reflectors, able to retrieve accurate designs and independently reproduce conventional design methods based on physical principles. (c) 2021 The Author(s)
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Self-Movement Inducing On-Demand Pattern of Mesoporous Silica Thin Film with Oriented Mesochannels
    Su, Bin
    Lu, Xuemin
    Lu, Qinghua
    Li, Xin
    You, Changquan
    Jia, Jia
    CHEMISTRY OF MATERIALS, 2009, 21 (20) : 4970 - 4976
  • [42] Thin film head design for high density recording
    Sato, I
    Aoyama, T
    Soeno, Y
    PROCEEDINGS OF THE FIFTH INTERNATIONAL SYMPOSIUM ON MAGNETIC MATERIALS, PROCESSES, AND DEVICES: APPLICATIONS TO STORAGE AND MICROELECTROMECHANICAL SYSTEMS (MEMS), 1999, 98 (20): : 65 - 81
  • [43] Inverse Design of Airfoil Using a Deep Convolutional Neural Network
    Sekar, Vinothkumar
    Zhang, Mengqi
    Shu, Chang
    Khoo, Boo Cheong
    AIAA JOURNAL, 2019, 57 (03) : 993 - 1003
  • [44] Inverse design of a metasurface based on a deep tandem neural network
    Xu, Peng
    Lou, Jun
    Li, Chenxia
    Jing, Xufeng
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2024, 41 (02) : A1 - A5
  • [45] INVERSE DESIGN OF AIRFOILS USING CONVOLUTIONAL NEURAL NETWORK AND DEEP NEURAL NETWORK
    Kumar, Amit
    Vadlamani, Nagabhushana Rao
    PROCEEDINGS OF ASME 2021 GAS TURBINE INDIA CONFERENCE (GTINDIA2021), 2021,
  • [46] Inverse Design of High Absorption Thin-Film Photovoltaic Materials
    Yu, Liping
    Kokenyesi, Robert S.
    Keszler, Douglas A.
    Zunger, Alex
    ADVANCED ENERGY MATERIALS, 2013, 3 (01) : 43 - 48
  • [47] Optimal Proactive Vehicle Relocation for On-Demand Mobility Service with Deep Convolution-LSTM Network
    Lei, Zengxiang
    Qian, Xinwu
    Ukkusuri, Satish V.
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 3373 - 3378
  • [48] Efficient On-Demand Design of Fiber Optic Vibration Sensor With a Symmetric Bidirectional Neural Network
    Cao, Shengjie
    Bai, Jiandong
    Jin, Yuanbin
    Zheng, Yongqiu
    Li, Nan
    Xue, Chenyang
    IEEE SENSORS JOURNAL, 2024, 24 (09) : 14279 - 14290
  • [49] Boomerang: On-Demand Cooperative Deep Neural Network Inference for Edge Intelligence on the Industrial Internet of Things
    Zeng, Liekang
    Li, En
    Zhou, Zhi
    Chen, Xu
    IEEE NETWORK, 2019, 33 (05): : 96 - 103
  • [50] Deep reinforcement learning for the rapid on-demand design of mechanical metamaterials with targeted nonlinear deformation responses
    Brown, Nathan K.
    Garland, Anthony P.
    Fadel, Georges M.
    Li, Gang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126