Point-cloud registration using adaptive radial basis functions

被引:19
|
作者
Zhang, Ju [1 ]
Ackland, David [2 ]
Fernandez, Justin [1 ,3 ]
机构
[1] Univ Auckland, Auckland Bioengn Inst, Level G,Uniserv House,70 Symonds St, Auckland 1010, New Zealand
[2] Univ Melbourne, Dept Biomed Engn, Parkville, Vic, Australia
[3] Univ Auckland, Dept Engn Sci, Auckland, New Zealand
关键词
Non-rigid registration; registration; radial basis function; morphing; model generation;
D O I
10.1080/10255842.2018.1484914
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Non-rigid registration is a common part of bioengineering model-generation workflows. Compared to common mesh-based methods, radial basis functions can provide more flexible deformation fields due to their meshless nature. We introduce an implementation of RBF non-rigid registration with iterative knot-placement to adaptively reduce registration error. The implementation is validated on surface meshes of the femur, hemi-pelvis, mandible, and lumbar spine. Mean registration surface errors ranged from 0.37 to 0.99mm, Hausdorff distance from 1.84 to 2.47mm, and DICE coefficients from 0.97 to 0.99. The implementation is available for use in the free and open-source GIAS2 library.
引用
收藏
页码:498 / 502
页数:5
相关论文
共 50 条
  • [41] Investigation of an adaptive sampling method for data interpolation using radial basis functions
    Mackman, T. J.
    Allen, C. B.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (07) : 915 - 938
  • [42] Adaptive Sampling Methodology for Structural Identification Using Radial-Basis Functions
    Proverbio, Marco
    Costa, Alberto
    Smith, Ian F. C.
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2018, 32 (03)
  • [43] 2PNS++ point-cloud registration via hash of invariants and local compatibility check
    Liu, Hai
    Wang, Shulin
    Zhao, Donghong
    PLOS ONE, 2023, 18 (11):
  • [44] Probabilistic Modeling for Image Registration Using Radial Basis Functions: Application to Cardiac Motion Estimation
    Gan, Ziyu
    Sun, Wei
    Liao, Kaimin
    Yang, Xuan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7324 - 7338
  • [45] Jointed rock mass characterization using field and point-cloud data
    Marjanovic, Milos
    Pejic, Marko
    Krusic, Jelka
    Abolmasov, Biljana
    GEOMECHANICS AND GEODYNAMICS OF ROCK MASSES (EUROCK2018), VOLS 1 AND 2, 2018, : 319 - 324
  • [46] Management algorithm of point-cloud data based on octree concerned with adaptive levels of detail
    Zhang, Junfeng
    Xu, Dehe
    Wang, Xiaodong
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2016, 51 (01): : 78 - 84
  • [47] 3D Reconstruction of Scattered Point-cloud Using RBF
    Tian Chengjun
    Yang Qinglong
    Zhang Chenjie
    PROCEEDINGS OF THE 2015 6TH INTERNATIONAL CONFERENCE ON MANUFACTURING SCIENCE AND ENGINEERING, 2016, 32 : 1680 - 1684
  • [48] Pose Estimation of Mobile Robot Using Image and Point-Cloud Data
    An, Sung Won
    Park, Hong Seong
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2024, 19 (08) : 5367 - 5377
  • [49] Product design using point-cloud surfaces: A recursive subdivision technique for point parameterization
    Azariadis, Philip
    Sapidis, Nickolas
    COMPUTERS IN INDUSTRY, 2007, 58 (8-9) : 832 - 843
  • [50] Predicting Alignability of Point Cloud Pairs for Point Cloud Registration Using Features
    Kirsch, Andre
    Guenter, Andrei
    Koenig, Matthias
    2022 12TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS (ICPRS), 2022,