Point-cloud registration using adaptive radial basis functions

被引:19
|
作者
Zhang, Ju [1 ]
Ackland, David [2 ]
Fernandez, Justin [1 ,3 ]
机构
[1] Univ Auckland, Auckland Bioengn Inst, Level G,Uniserv House,70 Symonds St, Auckland 1010, New Zealand
[2] Univ Melbourne, Dept Biomed Engn, Parkville, Vic, Australia
[3] Univ Auckland, Dept Engn Sci, Auckland, New Zealand
关键词
Non-rigid registration; registration; radial basis function; morphing; model generation;
D O I
10.1080/10255842.2018.1484914
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Non-rigid registration is a common part of bioengineering model-generation workflows. Compared to common mesh-based methods, radial basis functions can provide more flexible deformation fields due to their meshless nature. We introduce an implementation of RBF non-rigid registration with iterative knot-placement to adaptively reduce registration error. The implementation is validated on surface meshes of the femur, hemi-pelvis, mandible, and lumbar spine. Mean registration surface errors ranged from 0.37 to 0.99mm, Hausdorff distance from 1.84 to 2.47mm, and DICE coefficients from 0.97 to 0.99. The implementation is available for use in the free and open-source GIAS2 library.
引用
收藏
页码:498 / 502
页数:5
相关论文
共 50 条
  • [21] INTERACTIVE REGISTRATION OF INTRACELLULAR VOLUMES WITH RADIAL BASIS FUNCTIONS
    Yoshizawa, Shin
    Takemoto, Satoko
    Takahashi, Miwa
    Muroi, Makoto
    Kazami, Sayaka
    Miyoshi, Hiromi
    Yokota, Hideo
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2010, 9 (03) : 207 - 224
  • [22] Adaptive Meshfree Methods Using Local Nodes and Radial Basis Functions
    Liu, G. R.
    Kee, Bernard B. T.
    Zhong, Z. H.
    Li, G. Y.
    Han, X.
    COMPUTATIONAL METHODS IN ENGINEERING & SCIENCE, 2006, : 71 - +
  • [23] Spectrum Cartography using Adaptive Radial Basis Functions: Experimental Validation
    Idsoe, Henning
    Hamid, Mohamed
    Jordbru, Thomas
    Cenkeramaddi, Linga Reddy
    Beferull-Lozano, Baltasar
    2017 IEEE 18TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2017,
  • [24] Adaptive receptive fields for radial basis functions
    Jafar, MM
    Zilouchian, A
    DESALINATION, 2001, 135 (1-3) : 83 - 91
  • [25] Shape-adaptive radial basis functions
    Webb, AR
    Shannon, S
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (06): : 1155 - 1166
  • [26] Local Scanned Point-Cloud Registration of Aeroengine Pipeline System Based on Axial Constraints
    Cao, Tao
    Liu, Yuanpeng
    Dai, Jiajia
    Gong, Xiaoxi
    Xie, Qian
    Wang, Jun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [27] ROBUST AND EFFICIENT POINT REGISTRATION BASED ON CLUSTERS AND GENERALIZED RADIAL BASIS FUNCTIONS (C-GRBF)
    Xu, Huihui
    Liu, Jundong
    Smith, Charles D.
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1669 - 1672
  • [28] Point-Cloud Mapping and Merging Using Mobile Laser Scanner
    Morita, Kakeru
    Hashimoto, Masafumi
    Takahashi, Kazuhiko
    2019 THIRD IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING (IRC 2019), 2019, : 417 - 418
  • [29] MATR: Multicompound Adaptive Transformer for Point Cloud Registration
    Wang, Yong
    Zhou, Pengbo
    Geng, Guohua
    An, Li
    Zhou, Mingquan
    Li, Kang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (11) : 12903 - 12912
  • [30] Point-Cloud Self-Adaptive Pose Transfer Based on Skinning Deformation
    Li M.
    Yin M.
    Li G.
    Zhao M.
    Yang F.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (11): : 1673 - 1683