Point-cloud registration using adaptive radial basis functions

被引:19
|
作者
Zhang, Ju [1 ]
Ackland, David [2 ]
Fernandez, Justin [1 ,3 ]
机构
[1] Univ Auckland, Auckland Bioengn Inst, Level G,Uniserv House,70 Symonds St, Auckland 1010, New Zealand
[2] Univ Melbourne, Dept Biomed Engn, Parkville, Vic, Australia
[3] Univ Auckland, Dept Engn Sci, Auckland, New Zealand
关键词
Non-rigid registration; registration; radial basis function; morphing; model generation;
D O I
10.1080/10255842.2018.1484914
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Non-rigid registration is a common part of bioengineering model-generation workflows. Compared to common mesh-based methods, radial basis functions can provide more flexible deformation fields due to their meshless nature. We introduce an implementation of RBF non-rigid registration with iterative knot-placement to adaptively reduce registration error. The implementation is validated on surface meshes of the femur, hemi-pelvis, mandible, and lumbar spine. Mean registration surface errors ranged from 0.37 to 0.99mm, Hausdorff distance from 1.84 to 2.47mm, and DICE coefficients from 0.97 to 0.99. The implementation is available for use in the free and open-source GIAS2 library.
引用
收藏
页码:498 / 502
页数:5
相关论文
共 50 条
  • [31] Dense point-cloud representation of a scene using monocular vision
    Diskin, Yakov
    Asari, Vijayan
    JOURNAL OF ELECTRONIC IMAGING, 2015, 24 (02)
  • [32] Target-free ULS-TLS point-cloud registration for alpine forest lands
    Liu, Qianwei
    Wang, Jinliang
    Ma, Weifeng
    Zhang, Jianpeng
    Deng, Yuncheng
    Shao, Dajiang
    Xu, Dongfan
    Liu, Yicheng
    Computers and Electronics in Agriculture, 2021, 190
  • [33] A Point-Cloud Solar Radiation Tool
    Pruzinec, Filip
    Duraciova, Renata
    ENERGIES, 2022, 15 (19)
  • [34] Smooth point-to-point trajectory planning for robot manipulators by using radial basis functions
    Chettibi, Taha
    ROBOTICA, 2019, 37 (03) : 539 - 559
  • [35] Target-free ULS-TLS point-cloud registration for alpine forest lands
    Liu, Qianwei
    Wang, Jinliang
    Ma, Weifeng
    Zhang, Jianpeng
    Deng, Yuncheng
    Shao, Dajiang
    Xu, Dongfan
    Liu, Yicheng
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 190
  • [36] Bathymetry-Based SLAM with Difference of Normals Point-Cloud Subsampling and Probabilistic ICP Registration
    Palomer, Albert
    Ridao, Pere
    Ribas, David
    Mallios, Angelos
    Gracias, Nuno
    Vallicrosa, Guillem
    2013 MTS/IEEE OCEANS - BERGEN, 2013,
  • [37] Adaptive cross-approximation for surface reconstruction using radial basis functions
    Grzhibovskis, Richards
    Bambach, Markus
    Rjasanow, Sergej
    Hirt, Gerhard
    JOURNAL OF ENGINEERING MATHEMATICS, 2008, 62 (02) : 149 - 160
  • [38] NON-PARAMETRIC SPECTRUM CARTOGRAPHY USING ADAPTIVE RADIAL BASIS FUNCTIONS
    Hamid, Mohamed
    Beferull-Lozano, Baltasar
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3599 - 3603
  • [39] Adaptive Restructuring of Radial Basis Functions Using Integrate-and-Fire Neurons
    Marvel, Jeremy A.
    2014 13TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2014, : 189 - 194
  • [40] Adaptive cross-approximation for surface reconstruction using radial basis functions
    Richards Grzhibovskis
    Markus Bambach
    Sergej Rjasanow
    Gerhard Hirt
    Journal of Engineering Mathematics, 2008, 62 : 149 - 160