Point-cloud registration using adaptive radial basis functions

被引:19
|
作者
Zhang, Ju [1 ]
Ackland, David [2 ]
Fernandez, Justin [1 ,3 ]
机构
[1] Univ Auckland, Auckland Bioengn Inst, Level G,Uniserv House,70 Symonds St, Auckland 1010, New Zealand
[2] Univ Melbourne, Dept Biomed Engn, Parkville, Vic, Australia
[3] Univ Auckland, Dept Engn Sci, Auckland, New Zealand
关键词
Non-rigid registration; registration; radial basis function; morphing; model generation;
D O I
10.1080/10255842.2018.1484914
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Non-rigid registration is a common part of bioengineering model-generation workflows. Compared to common mesh-based methods, radial basis functions can provide more flexible deformation fields due to their meshless nature. We introduce an implementation of RBF non-rigid registration with iterative knot-placement to adaptively reduce registration error. The implementation is validated on surface meshes of the femur, hemi-pelvis, mandible, and lumbar spine. Mean registration surface errors ranged from 0.37 to 0.99mm, Hausdorff distance from 1.84 to 2.47mm, and DICE coefficients from 0.97 to 0.99. The implementation is available for use in the free and open-source GIAS2 library.
引用
收藏
页码:498 / 502
页数:5
相关论文
共 50 条
  • [1] Image registration using radial basis functions with adaptive radius
    Shusharina, Nadezhda
    Sharp, Gregory
    MEDICAL PHYSICS, 2012, 39 (11) : 6542 - 6549
  • [2] Partial transport for point-cloud registration
    Bai, Yiku
    Tran, Huy
    Damelin, Steven B.
    Kolouri, Soheil
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2025, 23 (01):
  • [3] The algorithm to generate color point-cloud with the registration between panoramic image and laser point-cloud
    Zeng, Fanyang
    Zhong, Ruofei
    35TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT (ISRSE35), 2014, 17
  • [4] A Fast GPU Point-cloud Registration Algorithm
    Rahman, Md Mushfiqur
    Galanakou, Panagiota
    Kalantzis, Georgios
    2018 19TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2018, : 111 - 116
  • [5] Adaptive point-cloud surface interpretation
    Meng, Q.
    Li, B.
    Holstein, H.
    ADVANCES IN COMPUTER GRAPHICS, PROCEEDINGS, 2006, 4035 : 430 - 441
  • [6] Point-cloud Registration Using 3D Shape Contexts
    Price, Mathew
    Green, Jeremy
    Dickens, John
    2012 5TH ROBOTICS AND MECHATRONICS CONFERENCE OF SOUTH AFRICA (ROBOMECH), 2012,
  • [7] Implicit fitting of point cloud data using radial hermite basis functions
    Nielson, G. M.
    Hagen, H.
    Lee, K.
    COMPUTING, 2007, 79 (2-4) : 301 - 307
  • [8] Implicit fitting of point cloud data using radial hermite basis functions
    G. M. Nielson
    H. Hagen
    K. Lee
    Computing, 2007, 79 : 301 - 307
  • [9] PointRegGPT: Boosting 3D Point Cloud Registration Using Generative Point-Cloud Pairs for Training
    Chen, Suyi
    Xu, Hao
    Li, Haipeng
    Luo, Kunming
    Liu, Guanghui
    Fu, Chi-Wing
    Tan, Ping
    Li, Shuaicheng
    COMPUTER VISION - ECCV 2024, PT LI, 2025, 15109 : 272 - 289
  • [10] REGISTRATION OF DEFORMABLE MODELS BY USING RADIAL BASIS FUNCTIONS
    Jaramillo, Andres
    Prieto, Flavio
    Boulanger, Pierre
    DYNA-COLOMBIA, 2009, 76 (157): : 7 - 16