Generalization of Some Fractional Integral Operator Inequalities for Convex Functions via Unified Mittag-Leffler Function

被引:5
|
作者
Nonlaopon, Kamsing [1 ]
Farid, Ghulam [2 ]
Yasmeen, Hafsa [2 ]
Shah, Farooq Ahmed [2 ]
Jung, Chahn Yong [3 ]
机构
[1] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock 43600, Pakistan
[3] Gyeongsang Natl Univ, Dept Business Adm, Jinju 52828, South Korea
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 05期
关键词
integral operators; fractional integral operators; bounds; (alpha; m)-convex function; symmetry;
D O I
10.3390/sym14050922
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper aims to obtain the bounds of a class of integral operators containing Mittag-Leffler functions in their kernels. A recently defined unified Mittag-Leffler function plays a vital role in connecting the results of this paper with the well-known bounds of fractional integral operators published in the recent past. The symmetry of a function about a line is a fascinating property that plays an important role in mathematical inequalities. A variant of the Hermite-Hadamard inequality is established using the closely symmetric property for (alpha, m)-convex functions.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel
    Srivastava, H. M.
    Tomovski, Zivorad
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) : 198 - 210
  • [32] Fractional integral inequalities for generalized-m\documentclass-convex mappings via an extended generalized Mittag-Leffler function
    Anastassiou, George
    Kashuri, Artion
    Liko, Rozana
    ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (02) : 231 - 243
  • [33] The Gruss-Type and Some Other Related Inequalities via Fractional Integral with Respect to Multivariate Mittag-Leffler Function
    Shao, Yabin
    Rahman, Gauhar
    Elmasry, Yasser
    Samraiz, Muhammad
    Kashuri, Artion
    Nonlaopon, Kamsing
    FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [34] On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions
    Saddiqa, Maryam
    Farid, Ghulam
    Ullah, Saleem
    Jung, Chahn Yong
    Shim, Soo Hak
    AIMS MATHEMATICS, 2021, 6 (06): : 6454 - 6468
  • [35] Some Unified Integrals for Generalized Mittag-Leffler Functions
    Singh, Prakash
    Jain, Shilpi
    Cattani, Carlo
    AXIOMS, 2021, 10 (04)
  • [36] The composition of extended Mittag-Leffler functions with pathway integral operator
    G Rahman
    A Ghaffar
    S Mubeen
    M Arshad
    SU Khan
    Advances in Difference Equations, 2017
  • [37] The composition of extended Mittag-Leffler functions with pathway integral operator
    Rahman, G.
    Ghaffar, A.
    Mubeen, S.
    Arshad, M.
    Khan, S. U.
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [38] Geometric properties of an integral operator associated with Mittag-Leffler functions
    Porwal, Saurabh
    Magesh, Nanjundan
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [39] A Generalized Convexity and Inequalities Involving the Unified Mittag-Leffler Function
    Farid, Ghulam
    Tariq, Hafsa
    Tawfiq, Ferdous M. O.
    Ro, Jong-Suk
    Zainab, Saira
    AXIOMS, 2023, 12 (08)