The composition of extended Mittag-Leffler functions with pathway integral operator

被引:0
|
作者
G Rahman
A Ghaffar
S Mubeen
M Arshad
SU Khan
机构
[1] International Islamic University,Department of Mathematics
[2] BUITEMS,Department of Mathematical Sciences
[3] University of Sargodha,Department of Mathematics
[4] Gomal University,Department of Mathematics
关键词
extended Mittag-Leffler function; pathway fractional integral operator;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present certain composition formulae of the pathway fractional integral operators associated with two extended Mittag-Leffler functions. Here, we find out the relevant connections of some particular cases of the main results with those earlier ones.
引用
收藏
相关论文
共 50 条
  • [1] The composition of extended Mittag-Leffler functions with pathway integral operator
    Rahman, G.
    Ghaffar, A.
    Mubeen, S.
    Arshad, M.
    Khan, S. U.
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [2] Fractional integral operator associated with extended Mittag-Leffler function
    Nadir, Aneela
    Khan, Adnan
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2019, 6 (02): : 1 - 5
  • [3] Pathway Fractional Integral Formulas Involving Extended Mittag-Leffler Functions in the Kernel
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Choi, Junesang
    Mubeen, Shahid
    Arshad, Muhammad
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (01): : 125 - 134
  • [4] Geometric properties of an integral operator associated with Mittag-Leffler functions
    Porwal, Saurabh
    Magesh, Nanjundan
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [5] A basic study of a fractional integral operator with extended Mittag-Leffler kernel
    Rahman, Gauhar
    Suwan, Iyad
    Nisar, Kottakkaran Sooppy
    Abdeljawad, Thabet
    Samraiz, Muhammad
    Ali, Asad
    AIMS MATHEMATICS, 2021, 6 (11): : 12757 - 12770
  • [6] A Note on Fractional Integral Operator Associated with Multiindex Mittag-Leffler Functions
    Choi, Junesang
    Agarwal, Praveen
    FILOMAT, 2016, 30 (07) : 1931 - 1939
  • [7] Pathway Fractional Integral Operator Associated with 3m-Parametric Mittag-Leffler Functions
    Jain S.
    Agarwal P.
    Kilicman A.
    International Journal of Applied and Computational Mathematics, 2018, 4 (5)
  • [8] Pathway fractional integral formula involving an extended Mittag-Leffler function
    Khan, Adnan
    Akhtar, Hafiz Muhammad
    Nisar, K. S.
    Suthar, D. L.
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2022, 42 (03): : 141 - 147
  • [9] The Integral Mittag-Leffler, Whittaker and Wright Functions
    Apelblat, Alexander
    Gonzalez-Santander, Juan Luis
    MATHEMATICS, 2021, 9 (24)
  • [10] Integral transform with the extended generalized Mittag-Leffler function
    Kilbas, A.A.
    Koroleva, A.A.
    Mathematical Modelling and Analysis, 2006, 11 (02) : 173 - 186