Generalization of Some Fractional Integral Operator Inequalities for Convex Functions via Unified Mittag-Leffler Function

被引:5
|
作者
Nonlaopon, Kamsing [1 ]
Farid, Ghulam [2 ]
Yasmeen, Hafsa [2 ]
Shah, Farooq Ahmed [2 ]
Jung, Chahn Yong [3 ]
机构
[1] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock 43600, Pakistan
[3] Gyeongsang Natl Univ, Dept Business Adm, Jinju 52828, South Korea
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 05期
关键词
integral operators; fractional integral operators; bounds; (alpha; m)-convex function; symmetry;
D O I
10.3390/sym14050922
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper aims to obtain the bounds of a class of integral operators containing Mittag-Leffler functions in their kernels. A recently defined unified Mittag-Leffler function plays a vital role in connecting the results of this paper with the well-known bounds of fractional integral operators published in the recent past. The symmetry of a function about a line is a fascinating property that plays an important role in mathematical inequalities. A variant of the Hermite-Hadamard inequality is established using the closely symmetric property for (alpha, m)-convex functions.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Inequalities of the Ostrowski Type Associated with Fractional Integral Operators Containing the Mittag-Leffler Function
    Chen, Dong
    Mehmood, Sajid
    Farid, Ghulam
    Nonlaopon, Kamsing
    SYMMETRY-BASEL, 2022, 14 (12):
  • [42] Some fractional integral formulas for the Mittag-Leffler type function with four parameters
    Agarwal, Praveen
    Nieto, Juan J.
    OPEN MATHEMATICS, 2015, 13 : 537 - 546
  • [43] An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results
    Bansal, M. K.
    Jolly, N.
    Jain, R.
    Kumar, Devendra
    JOURNAL OF ANALYSIS, 2019, 27 (03): : 727 - 740
  • [44] An integral operator involving generalized Mittag-Leffler function and associated fractional calculus results
    M. K. Bansal
    N. Jolly
    R. Jain
    Devendra Kumar
    The Journal of Analysis, 2019, 27 : 727 - 740
  • [45] Some results on the generalized Mittag-Leffler function operator
    Prajapati, J. C.
    Jana, R. K.
    Saxena, R. K.
    Shukla, A. K.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [46] Some results on the generalized Mittag-Leffler function operator
    JC Prajapati
    RK Jana
    RK Saxena
    AK Shukla
    Journal of Inequalities and Applications, 2013
  • [47] Functional Inequalities for the Mittag-Leffler Functions
    Mehrez, Khaled
    Sitnik, Sergei M.
    RESULTS IN MATHEMATICS, 2017, 72 (1-2) : 703 - 714
  • [48] A basic study of a fractional integral operator with extended Mittag-Leffler kernel
    Rahman, Gauhar
    Suwan, Iyad
    Nisar, Kottakkaran Sooppy
    Abdeljawad, Thabet
    Samraiz, Muhammad
    Ali, Asad
    AIMS MATHEMATICS, 2021, 6 (11): : 12757 - 12770
  • [49] Convexity of the Integral Operator Involving Normalized Mittag-Leffler Function
    Caglar, Murat
    Yilmaz, Saip Emre
    Deniz, Erhan
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [50] Fractional Inequalities Associated With a Generalized Mittag-Leffler Function and Applications
    Farid, Ghulam
    Mubeen, Shahid
    Set, Erhan
    FILOMAT, 2020, 34 (08) : 2683 - 2692