On the non-asymptotic concentration of heteroskedastic Wishart-type matrix

被引:6
|
作者
Cai, T. Tony [1 ]
Han, Rungang [2 ]
Zhang, Anru R. [2 ,3 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
[2] Duke Univ, Durham, NC 27706 USA
[3] Univ Wisconsin, Madison, WI USA
来源
关键词
concentration inequality; nonasymptotic bound; random matrix; Wishart matrix; BOUNDS; RECONSTRUCTION; INEQUALITIES; CONVERGENCE; VALUES; NORM;
D O I
10.1214/22-EJP758
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper focuses on the non-asymptotic concentration of the heteroskedastic Wishart-type matrices. Suppose Z is a p(1)-by-p(2) random matrix and Z(ij) similar to N(0, sigma(2)(ij)) independently, we prove the expected spectral norm of Wishart matrix deviations (i.e., E parallel to ZZ(T) - EZZ(T)parallel to) is upper bounded by (1 + epsilon) {2 sigma(C sigma R) + sigma(2)(C) + C sigma(R sigma)* root log(p(1) boolean AND p(2)) +C-sigma*(2) log(p(1) boolean AND p(2))}, where sigma(2)(C) := max(j) Sigma(p1)(i=1) sigma(2)(ij), sigma(2)(R) := max(i) Sigma(p2)(j=1) sigma(2)(ij) and sigma(2)(*) := max(i,j) sigma(2)(ij). A minimax lower bound is developed that matches this upper bound. Then, we derive the concentration inequalities, moments, and tail bounds for the heteroskedastic Wishart-type matrix under more general distributions, such as sub-Gaussian and heavy-tailed distributions. Next, we consider the cases where Z has homoskedastic columns or rows (i.e., sigma(ij) approximate to sigma(i) or sigma(ij) approximate to sigma(j)) and derive the rate-optimal Wishart-type concentration bounds. Finally, we apply the developed tools to identify the sharp signal-to-noise ratio threshold for consistent clustering in the heteroskedastic clustering problem.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] ADVANCES IN WISHART-TYPE MODELLING OF CHANNEL CAPACITY
    Ferreira, J. T.
    Bekker, A.
    Arashi, M.
    REVSTAT-STATISTICAL JOURNAL, 2020, 18 (03) : 237 - 255
  • [2] Non-asymptotic Results for Singular Values of Gaussian Matrix Products
    Boris Hanin
    Grigoris Paouris
    Geometric and Functional Analysis, 2021, 31 : 268 - 324
  • [3] Random matrix transforms and applications via non-asymptotic eigenanalysis
    Alfano, Giuseppa
    Tulino, Antonia M.
    Lozano, Angel
    Verdu, Sergio
    2006 INTERNATIONAL ZURICH SEMINAR ON COMMUNICATIONS: ACCESS - TRANSMISSION - NETWORKING, PROCEEDINGS, 2006, : 18 - 21
  • [4] NON-ASYMPTOTIC RESULTS FOR SINGULAR VALUES OF GAUSSIAN MATRIX PRODUCTS
    Hanin, Boris
    Paouris, Grigoris
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2021, 31 (02) : 268 - 324
  • [5] Sharp non-asymptotic concentration inequalities for the approximation of the invariant distribution of a diffusion
    Honore, Igor
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (04) : 2127 - 2158
  • [6] Concentration of Measure: Non-Asymptotic Analysis for Uplink MU-MIMO
    Feng, Junjuan
    Ngo, Hien Quoc
    Matthaiou, Michail
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 1353 - 1358
  • [7] A Refined Non-Asymptotic Tail Bound of Sub-Gaussian Matrix
    Xianjie GAO
    Chao ZHANG
    Hongwei ZHANG
    Journal of Mathematical Research with Applications, 2020, 40 (05) : 543 - 550
  • [8] Non-asymptotic calibration and resolution
    Vovk, V
    ALGORITHMIC LEARNING THEORY, 2005, 3734 : 429 - 443
  • [9] Feedback in the Non-Asymptotic Regime
    Polyanskiy, Yury
    Poor, H. Vincent
    Verdu, Sergio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 4903 - 4925
  • [10] Language Approximation: Asymptotic and Non-asymptotic Results
    Ravikumar, Bala
    DEVELOPMENTS IN LANGUAGE THEORY, DLT 2017, 2017, 10396