Weighted inequalities for Hardy-Steklov operators

被引:6
|
作者
Bernardis, A. L.
Martin-Reyes, F. J.
Salvador, P. Ortega
机构
[1] Consejo Nacl Invest Cient & Tecn, IMAL, RA-3000 Santa Fe, Argentina
[2] Univ Malaga, Fac Ciencias, E-29071 Malaga, Spain
关键词
Hardy-Steklov operator; weights; inequalities;
D O I
10.4153/CJM-2007-011-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the pairs of weights (v, w) for which the operator Tf (x) = g(x) integral(h(x))(s(x)) f with s and h increasing and continuous functions is of strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case 0 < q < p and 1 < p < infinity. The result for the weak type is new while the characterizations for the strong type improve the ones given by H. P. Heinig and G. Sinnamon. In particular, we do not assume differentiabflity properties on s and h and we obtain that the strong type inequality (p, q), q < p, is characterized by the fact that the function Phi(x) = sup [GRAPHICS] belongs to L-r(g(q)w), where 1/r = 1/q - 1/p and the supremum is taken over all c and d such that c <= x <= d and s(d) <= h(c).
引用
收藏
页码:276 / 295
页数:20
相关论文
共 50 条
  • [1] Weighted modular inequalities for Hardy-Steklov operators
    Ortega Salvador, Pedro
    Ramirez Torreblanca, Consuelo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) : 803 - 814
  • [2] MIXED TYPE WEIGHTED INTEGRAL INEQUALITIES FOR THE HARDY-STEKLOV INTEGRAL OPERATORS
    Haloi, Rajib
    Chutia, Duranta
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (04): : 789 - 807
  • [3] On Hardy-Steklov and geometric Steklov operators
    Burenkov, V.
    Jain, P.
    Tararykova, T.
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (11) : 1244 - 1256
  • [4] Bilinear Hardy-Steklov Operators
    Jain, P.
    Kanjilal, S.
    Stepanov, V. D.
    Ushakova, E. P.
    MATHEMATICAL NOTES, 2018, 104 (5-6) : 823 - 832
  • [5] On Bilinear Hardy-Steklov Operators
    Jain, P.
    Kanjilal, S.
    Stepanov, V. D.
    Ushakova, E. P.
    DOKLADY MATHEMATICS, 2018, 98 (03) : 634 - 637
  • [6] Hardy-Steklov operators and Sobolev-type embedding inequalities
    Nasyrova, M. G.
    Ushakova, E. P.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2016, 293 (01) : 228 - 254
  • [7] Hardy-Steklov Integral Operators: Part II
    Prokhorov, D. V.
    Stepanov, V. D.
    Ushakova, E. P.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 302 : S1 - S61
  • [8] Hardy-Steklov Integral Operators: Part I
    Prokhorov, D. V.
    Stepanov, V. D.
    Ushakova, E. P.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 300 : 1 - 112
  • [9] Hardy-Steklov Operators and Duality Principle in Weighted Sobolev Spaces of the First Order
    Stepanov, V. D.
    Ushakova, E. P.
    DOKLADY MATHEMATICS, 2018, 97 (03) : 232 - 235
  • [10] HARDY-STEKLOV OPERATORS ON TOPOLOGICAL MEASURE SPACES
    Mynbaev, Kairat t.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (03): : 601 - 612