Hardy-Steklov operators and Sobolev-type embedding inequalities

被引:9
|
作者
Nasyrova, M. G. [1 ]
Ushakova, E. P. [2 ]
机构
[1] Russian Acad Sci, Far Eastern Branch, Ctr Comp, Ul Kim Yu Chena 65, Khabarovsk 680000, Russia
[2] Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
INTEGRAL-OPERATORS; KERNEL OPERATORS; LEBESGUE SPACES; BOUNDEDNESS; POINTS; LIMITS;
D O I
10.1134/S0081543816040179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize weighted inequalities corresponding to the embedding of a class of absolutely continuous functions into a fractional-order Sobolev space. As auxiliary results of the paper, which are also of independent interest, we obtain several new types of necessary and sufficient conditions for the boundedness of the Hardy-Steklov operator (integral operator with two variable limits) in weighted Lebesgue spaces.
引用
收藏
页码:228 / 254
页数:27
相关论文
共 50 条
  • [1] Hardy—Steklov operators and Sobolev-type embedding inequalities
    M. G. Nasyrova
    E. P. Ushakova
    Proceedings of the Steklov Institute of Mathematics, 2016, 293 : 228 - 254
  • [2] Weighted inequalities for Hardy-Steklov operators
    Bernardis, A. L.
    Martin-Reyes, F. J.
    Salvador, P. Ortega
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2007, 59 (02): : 276 - 295
  • [3] Weighted modular inequalities for Hardy-Steklov operators
    Ortega Salvador, Pedro
    Ramirez Torreblanca, Consuelo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) : 803 - 814
  • [4] MIXED TYPE WEIGHTED INTEGRAL INEQUALITIES FOR THE HARDY-STEKLOV INTEGRAL OPERATORS
    Haloi, Rajib
    Chutia, Duranta
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (04): : 789 - 807
  • [5] On Hardy-Steklov and geometric Steklov operators
    Burenkov, V.
    Jain, P.
    Tararykova, T.
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (11) : 1244 - 1256
  • [6] Bilinear Hardy-Steklov Operators
    Jain, P.
    Kanjilal, S.
    Stepanov, V. D.
    Ushakova, E. P.
    MATHEMATICAL NOTES, 2018, 104 (5-6) : 823 - 832
  • [7] On Bilinear Hardy-Steklov Operators
    Jain, P.
    Kanjilal, S.
    Stepanov, V. D.
    Ushakova, E. P.
    DOKLADY MATHEMATICS, 2018, 98 (03) : 634 - 637
  • [8] Some Bilinear Hardy-Steklov Type Integral Inequalities
    Benaissa, Bouharket
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (05) : 510 - 522
  • [9] Hardy-Steklov Operators and Duality Principle in Weighted Sobolev Spaces of the First Order
    Stepanov, V. D.
    Ushakova, E. P.
    DOKLADY MATHEMATICS, 2018, 97 (03) : 232 - 235
  • [10] Sobolev-type inequalities for Dunkl operators
    Velicu, Andrei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)