Weighted inequalities for Hardy-Steklov operators

被引:6
|
作者
Bernardis, A. L.
Martin-Reyes, F. J.
Salvador, P. Ortega
机构
[1] Consejo Nacl Invest Cient & Tecn, IMAL, RA-3000 Santa Fe, Argentina
[2] Univ Malaga, Fac Ciencias, E-29071 Malaga, Spain
关键词
Hardy-Steklov operator; weights; inequalities;
D O I
10.4153/CJM-2007-011-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the pairs of weights (v, w) for which the operator Tf (x) = g(x) integral(h(x))(s(x)) f with s and h increasing and continuous functions is of strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case 0 < q < p and 1 < p < infinity. The result for the weak type is new while the characterizations for the strong type improve the ones given by H. P. Heinig and G. Sinnamon. In particular, we do not assume differentiabflity properties on s and h and we obtain that the strong type inequality (p, q), q < p, is characterized by the fact that the function Phi(x) = sup [GRAPHICS] belongs to L-r(g(q)w), where 1/r = 1/q - 1/p and the supremum is taken over all c and d such that c <= x <= d and s(d) <= h(c).
引用
收藏
页码:276 / 295
页数:20
相关论文
共 50 条
  • [41] Weighted hardy inequalities
    Edmunds, DE
    Hurri-Syrjänen, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 310 (02) : 424 - 435
  • [42] 一类加权Hardy-Steklov平均算子的有界性
    郑庆玉
    张蕾
    山东大学学报(理学版), 2011, 46 (06) : 41 - 44
  • [43] Weighted weak type inequalities with variable exponents for Hardy and maximal operators
    Aguilar Canestro, M. Isabel
    Ortega Salvador, Pedro
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2006, 82 (08) : 126 - 130
  • [44] WEIGHTED HARDY-TYPE INEQUALITIES INVOLVING FRACTIONAL CALCULUS OPERATORS
    Iqbal, Sajid
    Pecaric, Josip
    Samraiz, Muhammad
    Tomovski, Zivorad
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2018, 22 (534): : 77 - 91
  • [45] Weighted Hardy type inequalities for supremum operators on the cones of monotone functions
    Persson, Lars-Erik
    Shambilova, Guldarya E.
    Stepanov, Vladimir D.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [46] Weighted Hardy type inequalities for supremum operators on the cones of monotone functions
    Lars-Erik Persson
    Guldarya E Shambilova
    Vladimir D Stepanov
    Journal of Inequalities and Applications, 2016
  • [47] GENERAL WEIGHTED HARDY-TYPE INEQUALITIES RELATED TO GREINER OPERATORS
    Yener, Abdullah
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (07) : 2405 - 2430
  • [48] New characterization of weighted inequalities involving superposition of Hardy integral operators
    Gogatishvili, Amiran
    Unver, Tugce
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (09) : 3381 - 3409
  • [49] WEIGHTED NORM INEQUALITIES OF HARDY TYPE FOR A CLASS OF INTEGRAL-OPERATORS
    STEPANOV, VD
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 50 : 105 - 120
  • [50] Hardy–Steklov Operators and the Duality Principle in Weighted First-Order Sobolev Spaces on the Real Axis
    V. D. Stepanov
    E. P. Ushakova
    Mathematical Notes, 2019, 105 : 91 - 103