Weighted inequalities for Hardy-Steklov operators

被引:6
|
作者
Bernardis, A. L.
Martin-Reyes, F. J.
Salvador, P. Ortega
机构
[1] Consejo Nacl Invest Cient & Tecn, IMAL, RA-3000 Santa Fe, Argentina
[2] Univ Malaga, Fac Ciencias, E-29071 Malaga, Spain
关键词
Hardy-Steklov operator; weights; inequalities;
D O I
10.4153/CJM-2007-011-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the pairs of weights (v, w) for which the operator Tf (x) = g(x) integral(h(x))(s(x)) f with s and h increasing and continuous functions is of strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case 0 < q < p and 1 < p < infinity. The result for the weak type is new while the characterizations for the strong type improve the ones given by H. P. Heinig and G. Sinnamon. In particular, we do not assume differentiabflity properties on s and h and we obtain that the strong type inequality (p, q), q < p, is characterized by the fact that the function Phi(x) = sup [GRAPHICS] belongs to L-r(g(q)w), where 1/r = 1/q - 1/p and the supremum is taken over all c and d such that c <= x <= d and s(d) <= h(c).
引用
收藏
页码:276 / 295
页数:20
相关论文
共 50 条
  • [21] Weighted Inequalities for Discrete Iterated Hardy Operators
    Amiran Gogatishvili
    Martin Křepela
    Rastislav OĽhava
    Luboš Pick
    Mediterranean Journal of Mathematics, 2020, 17
  • [22] WEIGHTED NORM INEQUALITIES FOR OPERATORS OF HARDY TYPE
    BLOOM, S
    KERMAN, R
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (01) : 135 - 141
  • [23] Weighted inequalities involving Hardy and Copson operators
    Gogatishvili, Amiran
    Pick, Lubos
    Unver, Tugce
    JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (12)
  • [24] Weighted inequalities for fractional Hardy operators and commutators
    Li, Wenming
    Liu, Dong
    Liu, Jing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [25] Bilinear Hardy–Steklov Operators
    P. Jain
    S. Kanjilal
    V. D. Stepanov
    E. P. Ushakova
    Mathematical Notes, 2018, 104 : 823 - 832
  • [26] On Bilinear Hardy–Steklov Operators
    P. Jain
    S. Kanjilal
    V. D. Stepanov
    E. P. Ushakova
    Doklady Mathematics, 2018, 98 : 634 - 637
  • [27] Boundedness criteria for the Hardy-Steklov operator expressed in terms of a fairway function
    E. P. Ushakova
    Doklady Mathematics, 2015, 91 : 197 - 198
  • [28] Boundedness criteria for the Hardy-Steklov operator expressed in terms of a fairway function
    Ushakova, E. P.
    DOKLADY MATHEMATICS, 2015, 91 (02) : 197 - 198
  • [29] WEIGHTED INTEGRAL INEQUALITIES FOR MODIFIED INTEGRAL HARDY OPERATORS
    Chutia, Duranta
    Haloi, Rajib
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (03) : 757 - 780
  • [30] On weighted weak type inequalities for modified Hardy operators
    Martin-Reyes, FJ
    Ortega, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (06) : 1739 - 1746