Newton's versus Halley's method: A dynamical systems approach

被引:12
|
作者
Roberts, GE
Horgan-Kobelski, J
机构
[1] Coll Holy Cross, Dept Math & Comp Sci, Worcester, MA 01610 USA
[2] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
来源
基金
美国国家科学基金会;
关键词
Newton's method; Halley's method; Mandelbrot-like sets; dynamical systems;
D O I
10.1142/S0218127404011399
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compare the iterative root-finding methods of Newton and Halley applied to cubic polynomials in the complex plane. Of specific interest are those 'bad' polynomials for which a given numerical method contains an attracting cycle distinct from the roots. Thin implies the existence of an open set of initial guesses whose iterates do not converge 1 to one of the roots (i.e. the numerical method fails). Searching for a set of bad parameter values leads to Mandelbrot-like sets and interesting figures in the parameter plane. We provide some analytic and geometric arguments to explain the contrasting parameter plane pictures. In particular. We Show chat there exists a sequence of parameter values lambda(n) for which the corresponding numerical method has a superattracting n cycle. The lambda(n) lie at the centers of a converging sequence of Mandelbrot-like sets.
引用
收藏
页码:3459 / 3475
页数:17
相关论文
共 50 条