Newton's versus Halley's method: A dynamical systems approach

被引:12
|
作者
Roberts, GE
Horgan-Kobelski, J
机构
[1] Coll Holy Cross, Dept Math & Comp Sci, Worcester, MA 01610 USA
[2] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
来源
基金
美国国家科学基金会;
关键词
Newton's method; Halley's method; Mandelbrot-like sets; dynamical systems;
D O I
10.1142/S0218127404011399
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compare the iterative root-finding methods of Newton and Halley applied to cubic polynomials in the complex plane. Of specific interest are those 'bad' polynomials for which a given numerical method contains an attracting cycle distinct from the roots. Thin implies the existence of an open set of initial guesses whose iterates do not converge 1 to one of the roots (i.e. the numerical method fails). Searching for a set of bad parameter values leads to Mandelbrot-like sets and interesting figures in the parameter plane. We provide some analytic and geometric arguments to explain the contrasting parameter plane pictures. In particular. We Show chat there exists a sequence of parameter values lambda(n) for which the corresponding numerical method has a superattracting n cycle. The lambda(n) lie at the centers of a converging sequence of Mandelbrot-like sets.
引用
收藏
页码:3459 / 3475
页数:17
相关论文
共 50 条
  • [31] Newton's method for underdetermined systems of equations under the γ-condition
    He, Jin-Su
    Wang, Jin-Hua
    Li, Chong
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2007, 28 (5-6) : 663 - 679
  • [32] On the Convergence of Newton's Method for Monotone Systems of Polynomial Equations
    Kiefer, Stefan
    Luttenberger, Michael
    Esparza, Javier
    STOC 07: PROCEEDINGS OF THE 39TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, 2007, : 217 - 226
  • [33] A modification on Newton's method for solving systems of nonlinear equations
    Biazar, Jafar
    Ghanbari, Behzad
    World Academy of Science, Engineering and Technology, 2009, 58 : 897 - 901
  • [34] Lyapunov's second method for random dynamical systems
    Arnold, L
    Schmalfuss, B
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 177 (01) : 235 - 265
  • [35] Stein's method of normal approximation for dynamical systems
    Hella, Olli
    Leppanen, Juho
    Stenlund, Mikko
    STOCHASTICS AND DYNAMICS, 2020, 20 (04)
  • [36] On the Global Convergence of Improved Halley's Method
    Barrada, Mohammed
    Hasnaoui, Moulay Lahcen
    Ouaissa, Mariya
    ENGINEERING LETTERS, 2020, 28 (02) : 609 - 615
  • [37] KEPLER'S EQUATION AND NEWTON'S METHOD
    Colwell, Peter
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1991, 52 (02): : 203 - 204
  • [38] On the global convergence of improved Halley’s method
    Barrada, Mohammed
    Hasnaoui, Moulay Lahcen
    Ouaissa, Mariya
    Barrada, Mohammed (barrada.med@gmail.com), 1600, International Association of Engineers (28): : 609 - 615
  • [39] On the semilocal convergence behavior for Halley's method
    Ling, Yonghui
    Xu, Xiubin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 58 (03) : 597 - 618
  • [40] Enhancing Newton's method
    Shammas, NC
    DR DOBBS JOURNAL, 2002, 27 (06): : 94 - 97