Newton's versus Halley's method: A dynamical systems approach

被引:12
|
作者
Roberts, GE
Horgan-Kobelski, J
机构
[1] Coll Holy Cross, Dept Math & Comp Sci, Worcester, MA 01610 USA
[2] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
来源
基金
美国国家科学基金会;
关键词
Newton's method; Halley's method; Mandelbrot-like sets; dynamical systems;
D O I
10.1142/S0218127404011399
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compare the iterative root-finding methods of Newton and Halley applied to cubic polynomials in the complex plane. Of specific interest are those 'bad' polynomials for which a given numerical method contains an attracting cycle distinct from the roots. Thin implies the existence of an open set of initial guesses whose iterates do not converge 1 to one of the roots (i.e. the numerical method fails). Searching for a set of bad parameter values leads to Mandelbrot-like sets and interesting figures in the parameter plane. We provide some analytic and geometric arguments to explain the contrasting parameter plane pictures. In particular. We Show chat there exists a sequence of parameter values lambda(n) for which the corresponding numerical method has a superattracting n cycle. The lambda(n) lie at the centers of a converging sequence of Mandelbrot-like sets.
引用
收藏
页码:3459 / 3475
页数:17
相关论文
共 50 条
  • [21] Newton’s method
    Vivek S. Borkar
    Resonance, 2002, 7 (1) : 31 - 36
  • [22] Newton's method
    Meza, Juan C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (01) : 75 - 78
  • [23] On bilateral convergence of Halley's method
    Podlevskyi, BM
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (04): : 282 - 286
  • [24] Newton-Kantorovich convergence theorem of a new modified Halley's method family in a Banach space
    Lin, Rongfei
    Zhao, Yueqing
    Smarda, Zdenek
    Wu, Qingbiao
    Khan, Yasir
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [25] Newton-Kantorovich convergence theorem of a new modified Halley’s method family in a Banach space
    Rongfei Lin
    Yueqing Zhao
    Zdeněk Šmarda
    Qingbiao Wu
    Yasir Khan
    Advances in Difference Equations, 2013
  • [26] Newton's trajectories versus MOND's trajectories
    Gozzi, E.
    PHYSICS LETTERS B, 2017, 766 : 112 - 116
  • [27] Newton's method with deflation for isolated singularities of polynomial systems
    Leykin, Anton
    Verschelde, Jan
    Zhao, Ailing
    THEORETICAL COMPUTER SCIENCE, 2006, 359 (1-3) : 111 - 122
  • [28] Some Modifications of Newton's Method for Solving Systems of Equations
    Srochko, V. A.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2018, 26 : 91 - 104
  • [29] Newton's method for problems of optimal control of heterogeneous systems
    Veliov, VM
    OPTIMIZATION METHODS & SOFTWARE, 2003, 18 (06): : 689 - 703
  • [30] Finite Difference Newton's method for systems of nonlinear equations
    Weerakoon, S
    Amarasekera, HKGD
    MATHEMATICAL ENGINEERING IN INDUSTRY, 1999, 7 (04) : 433 - 440