Topological Hochschild homology of Thom spectra which are E∞-ring spectra

被引:12
|
作者
Blumberg, Andrew J. [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
ALGEBRAIC K-THEORY; LOCALIZATION; COHOMOLOGY; CATEGORY;
D O I
10.1112/jtopol/jtq017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify the topological Hochschild homology (THH) of the Thom spectrum associated to an E-infinity classifying map X -> BG for G an appropriate group or monoid (e.g. U, O, and F). We deduce the comparison from the observation of McClure, Schwanzl, and Vogt that THH of a cofibrant commutative S-algebra (E-infinity-ring spectrum) R can be described as an indexed colimit together with a verification that the Lewis-May operadic Thom spectrum functor preserves indexed colimits and is in fact a left adjoint. We prove a splitting result THH(M f) similar or equal to eq Mf boolean AND BX+, which yields a convenient description of THH(MU). This splitting holds even when the classifying map f: X -> BG is only a homotopy commutative A(infinity) map, provided that the induced multiplication on Mf extends to an E-infinity-ring structure; this permits us to recover Bokstedt's calculation of THH(HZ).
引用
收藏
页码:535 / 560
页数:26
相关论文
共 50 条
  • [41] Extension DGAs and topological Hochschild homology
    Bayindir, Haldun Ozgur
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2023, 23 (02): : 895 - 932
  • [42] Units of ring spectra, orientations, and Thom spectra via rigid infinite loop space theory
    Ando, Matthew
    Blumberg, Andrew J.
    Gepner, David
    Hopkins, Michael J.
    Rezk, Charles
    JOURNAL OF TOPOLOGY, 2014, 7 (04) : 1077 - 1117
  • [43] Topological Hochschild homology and the condition of Hochschild-Kostant-Rosenberg
    Larsen, M
    Lindenstrauss, A
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (04) : 1627 - 1638
  • [44] Homology of En ring spectra and iterated THH
    Basterra, Maria
    Mandell, Michael A.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (02): : 939 - 981
  • [45] Higher Hochschild Homology, Topological Chiral Homology and Factorization Algebras
    Ginot, Gregory
    Tradler, Thomas
    Zeinalian, Mahmoud
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (03) : 635 - 686
  • [46] Higher Hochschild Homology, Topological Chiral Homology and Factorization Algebras
    Grégory Ginot
    Thomas Tradler
    Mahmoud Zeinalian
    Communications in Mathematical Physics, 2014, 326 : 635 - 686
  • [47] On higher topological Hochschild homology of rings of integers
    Dundas, Bjorn Ian
    Lindenstrauss, Ayelet
    Richter, Birgit
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (02) : 489 - 507
  • [48] Topological Hochschild homology and the Bass trace conjecture
    Berrick, A. J.
    Hesselholt, Lars
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 704 : 169 - 185
  • [49] Topological Hochschild homology and the homotopy descent problem
    Tsalidis, S
    TOPOLOGY, 1998, 37 (04) : 913 - 934
  • [50] A multiplicative comparison of Mac Lane homology and topological Hochschild homology
    Horel, Geoffroy
    Ramzi, Maxime
    ANNALS OF K-THEORY, 2021, 6 (03) : 571 - 605