Topological Hochschild homology of Thom spectra which are E∞-ring spectra

被引:12
|
作者
Blumberg, Andrew J. [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
ALGEBRAIC K-THEORY; LOCALIZATION; COHOMOLOGY; CATEGORY;
D O I
10.1112/jtopol/jtq017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify the topological Hochschild homology (THH) of the Thom spectrum associated to an E-infinity classifying map X -> BG for G an appropriate group or monoid (e.g. U, O, and F). We deduce the comparison from the observation of McClure, Schwanzl, and Vogt that THH of a cofibrant commutative S-algebra (E-infinity-ring spectrum) R can be described as an indexed colimit together with a verification that the Lewis-May operadic Thom spectrum functor preserves indexed colimits and is in fact a left adjoint. We prove a splitting result THH(M f) similar or equal to eq Mf boolean AND BX+, which yields a convenient description of THH(MU). This splitting holds even when the classifying map f: X -> BG is only a homotopy commutative A(infinity) map, provided that the induced multiplication on Mf extends to an E-infinity-ring structure; this permits us to recover Bokstedt's calculation of THH(HZ).
引用
收藏
页码:535 / 560
页数:26
相关论文
共 50 条
  • [11] Towards topological Hochschild homology of Johnson-Wilson spectra
    Ausoni, Christian
    Richter, Birgit
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (01): : 375 - 393
  • [12] TOPOLOGICAL HOCHSCHILD HOMOLOGY AND THE CYCLIC BAR CONSTRUCTION IN SYMMETRIC SPECTRA
    Patchkoria, Irakli
    Sagave, Steffen
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 4099 - 4106
  • [13] Computational tools for twisted topological Hochschild homology of equivariant spectra
    Adamyk, Katharine
    Gerhardt, Teena
    Hess, Kathryn
    Klang, Inbar
    Kong, Hana Jia
    TOPOLOGY AND ITS APPLICATIONS, 2022, 316
  • [14] Topological Hochschild homology of truncated Brown-Peterson spectra, I
    Angelini-Knoll, Gabriel
    Culver, Dominic Leon
    Honing, Eva
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (05):
  • [15] H(Z/pk) AS A THOM SPECTRUM AND TOPOLOGICAL HOCHSCHILD HOMOLOGY
    Kitchloo, Nitu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (08) : 3647 - 3651
  • [16] Homology and cohomology of E∞ ring spectra
    Basterra, M
    Mandell, MA
    MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (04) : 903 - 944
  • [17] Homology and cohomology of E∞ ring spectra
    Maria Basterra
    Michael A. Mandell
    Mathematische Zeitschrift, 2005, 249 : 903 - 944
  • [18] Thom spectra which are wedges of Eilenberg-MacLane spectra
    Cohen, FR
    Vershinin, VV
    STABLE AND UNSTABLE HOMOTOPY, 1998, 19 : 43 - 65
  • [19] Homotopy completion and topological Quillen homology of structured ring spectra
    Harper, John E.
    Hess, Kathryn
    GEOMETRY & TOPOLOGY, 2013, 17 (03) : 1325 - 1416
  • [20] Topological Hochschild homology of ring functors and exact categories
    Dundas, BI
    McCarthy, R
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1996, 109 (03) : 231 - 294