Topological Hochschild homology of Thom spectra which are E∞-ring spectra

被引:12
|
作者
Blumberg, Andrew J. [1 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
ALGEBRAIC K-THEORY; LOCALIZATION; COHOMOLOGY; CATEGORY;
D O I
10.1112/jtopol/jtq017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify the topological Hochschild homology (THH) of the Thom spectrum associated to an E-infinity classifying map X -> BG for G an appropriate group or monoid (e.g. U, O, and F). We deduce the comparison from the observation of McClure, Schwanzl, and Vogt that THH of a cofibrant commutative S-algebra (E-infinity-ring spectrum) R can be described as an indexed colimit together with a verification that the Lewis-May operadic Thom spectrum functor preserves indexed colimits and is in fact a left adjoint. We prove a splitting result THH(M f) similar or equal to eq Mf boolean AND BX+, which yields a convenient description of THH(MU). This splitting holds even when the classifying map f: X -> BG is only a homotopy commutative A(infinity) map, provided that the induced multiplication on Mf extends to an E-infinity-ring structure; this permits us to recover Bokstedt's calculation of THH(HZ).
引用
收藏
页码:535 / 560
页数:26
相关论文
共 50 条
  • [21] Topological Hochschild homology
    Schwanzl, R
    Vogt, RM
    Waldhausen, F
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 345 - 356
  • [22] MACLANE HOMOLOGY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY
    PIRASHVILI, T
    WALDHAUSEN, F
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 82 (01) : 81 - 98
  • [23] A simple universal property of Thom ring spectra
    Antolin-Camarena, Omar
    Barthel, Tobias
    JOURNAL OF TOPOLOGY, 2019, 12 (01) : 56 - 78
  • [24] STABLE TOPOLOGICAL CYCLIC HOMOLOGY IS TOPOLOGICAL HOCHSCHILD HOMOLOGY
    HESSELHOLT, L
    ASTERISQUE, 1994, (226) : 175 - 192
  • [25] MACLANE HOMOLOGY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY
    FIEDOROWICZ, Z
    PIRASHVILI, T
    SCHWANZL, R
    VOGT, R
    WALDHAUSEN, F
    MATHEMATISCHE ANNALEN, 1995, 303 (01) : 149 - 164
  • [26] Real topological Hochschild homology
    Dotto, Emanuele
    Moi, Kristian
    Patchkoria, Irakli
    Reeh, Sune Precht
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (01) : 63 - 152
  • [27] THOM SPECTRA THAT ARE SYMMETRIC SPECTRA
    Schlichtkrull, Christian
    DOCUMENTA MATHEMATICA, 2009, 14 : 699 - 748
  • [28] TOPOLOGICAL HOCHSCHILD HOMOLOGY OF AS A MODULE
    Basu, Samik
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2017, 19 (01) : 253 - 280
  • [30] Localization theorems in topological Hochschild homology and topological cyclic homology
    Blumberg, Andrew J.
    Mandell, Michael A.
    GEOMETRY & TOPOLOGY, 2012, 16 (02) : 1053 - 1120