PERCOLATION ON DENSE GRAPH SEQUENCES

被引:54
|
作者
Bollobas, Bela [1 ,2 ]
Borgs, Christian [3 ]
Chayes, Jennifer [3 ]
Riordan, Oliver [4 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Microsoft Res New England, Cambridge, MA 01242 USA
[4] Univ Oxford, Inst Math, Oxford OX1 3LB, England
来源
ANNALS OF PROBABILITY | 2010年 / 38卷 / 01期
基金
美国国家科学基金会;
关键词
Percolation; cut metric; random graphs; RANDOM SUBGRAPHS; FINITE GRAPHS; PHASE-TRANSITION; COMPONENT; EVOLUTION;
D O I
10.1214/09-AOP478
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we determine the percolation threshold for an arbitrary sequence of dense graphs (G(n)). Let lambda(n) be the largest eigenvalue of the adjacency matrix of G(n), and let G(n)(p(n)) be the random subgraph of G(n) obtained by keeping each edge independently with probability p(n). We show that the appearance of a giant component in G(n)(P-n) has a sharp threshold at p(n) = 1/lambda(n). In fact, we prove much more: if (G(n)) converges to an irreducible limit, then the density of the largest component of G(n)(c/n) tends to the survival probability of a multi-type branching process defined in terms of this limit. Here the notions of convergence and limit are those of Borgs, Chayes, Lovasz, Sos and Vesztergombi. In addition to using basic properties of convergence, we make heavy use of the methods of Bollobas, Janson and Riordan, who used multi-type branching processes to study the emergence of a giant component in a very broad family of sparse inhomogeneous random graphs.
引用
收藏
页码:150 / 183
页数:34
相关论文
共 50 条
  • [41] Quantum walk coherences on a dynamical percolation graph
    Fabian Elster
    Sonja Barkhofen
    Thomas Nitsche
    Jaroslav Novotný
    Aurél Gábris
    Igor Jex
    Christine Silberhorn
    Scientific Reports, 5
  • [42] Extremal optimization of graph partitioning at the percolation threshold
    Boettcher, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (28): : 5201 - 5211
  • [43] Bootstrap Percolation on a Graph with Random and Local Connections
    Turova, Tatyana S.
    Vallier, Thomas
    JOURNAL OF STATISTICAL PHYSICS, 2015, 160 (05) : 1249 - 1276
  • [44] The diameter of a long-range percolation graph
    Coppersmith, D
    Gamarnik, D
    Sviridenko, M
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (01) : 1 - 13
  • [45] BOOTSTRAP PERCOLATION ON THE RANDOM GRAPH Gn,p
    Janson, Svante
    Luczak, Tomasz
    Turova, Tatyana
    Vallier, Thomas
    ANNALS OF APPLIED PROBABILITY, 2012, 22 (05): : 1989 - 2047
  • [46] On the maximum running time in graph bootstrap percolation
    Bollobas, Bela
    Przykucki, Michal
    Riordan, Oliver
    Sahasrabudhe, Julian
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [47] Quantum walk coherences on a dynamical percolation graph
    Elster, Fabian
    Barkhofen, Sonja
    Nitsche, Thomas
    Novotny, Jaroslav
    Gabris, Aurel
    Jex, Igor
    Silberhorn, Christine
    SCIENTIFIC REPORTS, 2015, 5
  • [48] The diameter of a long-range percolation graph
    Coppersmith, D
    Camarnik, D
    Sviridenko, M
    MATHEMATICS AND COMPUTER SCIENCE II: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2002, : 147 - 159
  • [49] Percolation and Connectivity in the Intrinsically Secure Communications Graph
    Pinto, Pedro C.
    Win, Moe Z.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (03) : 1716 - 1730
  • [50] Percolation threshold for metric graph loop soup
    Chang, Yinshan
    Du, Hang
    Li, Xinyi
    BERNOULLI, 2024, 30 (04) : 3324 - 3333