PERCOLATION ON DENSE GRAPH SEQUENCES

被引:54
|
作者
Bollobas, Bela [1 ,2 ]
Borgs, Christian [3 ]
Chayes, Jennifer [3 ]
Riordan, Oliver [4 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Microsoft Res New England, Cambridge, MA 01242 USA
[4] Univ Oxford, Inst Math, Oxford OX1 3LB, England
来源
ANNALS OF PROBABILITY | 2010年 / 38卷 / 01期
基金
美国国家科学基金会;
关键词
Percolation; cut metric; random graphs; RANDOM SUBGRAPHS; FINITE GRAPHS; PHASE-TRANSITION; COMPONENT; EVOLUTION;
D O I
10.1214/09-AOP478
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we determine the percolation threshold for an arbitrary sequence of dense graphs (G(n)). Let lambda(n) be the largest eigenvalue of the adjacency matrix of G(n), and let G(n)(p(n)) be the random subgraph of G(n) obtained by keeping each edge independently with probability p(n). We show that the appearance of a giant component in G(n)(P-n) has a sharp threshold at p(n) = 1/lambda(n). In fact, we prove much more: if (G(n)) converges to an irreducible limit, then the density of the largest component of G(n)(c/n) tends to the survival probability of a multi-type branching process defined in terms of this limit. Here the notions of convergence and limit are those of Borgs, Chayes, Lovasz, Sos and Vesztergombi. In addition to using basic properties of convergence, we make heavy use of the methods of Bollobas, Janson and Riordan, who used multi-type branching processes to study the emergence of a giant component in a very broad family of sparse inhomogeneous random graphs.
引用
收藏
页码:150 / 183
页数:34
相关论文
共 50 条
  • [31] SMALL DENSE SUBGRAPHS OF A GRAPH
    Jiang, Tao
    Newman, Andrew
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (01) : 124 - 142
  • [32] Dense and sparse graph partition
    Darlay, Julien
    Brauner, Nadia
    Moncel, Julien
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (16-17) : 2389 - 2396
  • [33] DENSE SEQUENCES OF CONVEX POLYTOPES
    PERLES, MA
    SHEPHARD, GC
    MATHEMATIKA, 1970, 17 (33) : 28 - &
  • [34] DENSE INFINITE Bh SEQUENCES
    Cilleruelo, Javier
    Tesoro, Rafael
    PUBLICACIONS MATEMATIQUES, 2015, 59 (01) : 55 - 73
  • [35] Dense sumsets of Sidon sequences
    Kiss, Sandor Z.
    Sandor, Csaba
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 107
  • [36] DENSE PRIMITIVE POLYNOMIAL SEQUENCES
    COHEN, SD
    MATHEMATIKA, 1975, 22 (43) : 89 - 91
  • [37] Bootstrap Percolation on a Graph with Random and Local Connections
    Tatyana S. Turova
    Thomas Vallier
    Journal of Statistical Physics, 2015, 160 : 1249 - 1276
  • [38] Quantum Walk Coherences on a Dynamical Percolation Graph
    Elster, Fabian
    Barkhofen, Sonja
    Nitsche, Thomas
    Novotny, Jaroslav
    Gabris, Aurel
    Jex, Igor
    Silberhorn, Christine
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [39] Percolation and Connectivity on the Signal to Interference Ratio Graph
    Vaze, Rahul
    2012 PROCEEDINGS IEEE INFOCOM, 2012, : 513 - 521
  • [40] First-passage percolation on the random graph
    van der Hofstad, R
    Hooghiemstra, G
    Van Mieghem, P
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2001, 15 (02) : 225 - 237