PERCOLATION ON DENSE GRAPH SEQUENCES

被引:54
|
作者
Bollobas, Bela [1 ,2 ]
Borgs, Christian [3 ]
Chayes, Jennifer [3 ]
Riordan, Oliver [4 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Microsoft Res New England, Cambridge, MA 01242 USA
[4] Univ Oxford, Inst Math, Oxford OX1 3LB, England
来源
ANNALS OF PROBABILITY | 2010年 / 38卷 / 01期
基金
美国国家科学基金会;
关键词
Percolation; cut metric; random graphs; RANDOM SUBGRAPHS; FINITE GRAPHS; PHASE-TRANSITION; COMPONENT; EVOLUTION;
D O I
10.1214/09-AOP478
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we determine the percolation threshold for an arbitrary sequence of dense graphs (G(n)). Let lambda(n) be the largest eigenvalue of the adjacency matrix of G(n), and let G(n)(p(n)) be the random subgraph of G(n) obtained by keeping each edge independently with probability p(n). We show that the appearance of a giant component in G(n)(P-n) has a sharp threshold at p(n) = 1/lambda(n). In fact, we prove much more: if (G(n)) converges to an irreducible limit, then the density of the largest component of G(n)(c/n) tends to the survival probability of a multi-type branching process defined in terms of this limit. Here the notions of convergence and limit are those of Borgs, Chayes, Lovasz, Sos and Vesztergombi. In addition to using basic properties of convergence, we make heavy use of the methods of Bollobas, Janson and Riordan, who used multi-type branching processes to study the emergence of a giant component in a very broad family of sparse inhomogeneous random graphs.
引用
收藏
页码:150 / 183
页数:34
相关论文
共 50 条
  • [21] Bootstrap percolation on the random regular graph
    Balogh, Jozsef
    Pittel, Boris G.
    RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (1-2) : 257 - 286
  • [22] Graph Percolation Embeddings for Efficient Knowledge Graph Inductive Reasoning
    Wang, Kai
    Lin, Dan
    Luo, Siqiang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (03) : 1198 - 1212
  • [23] Percolation in the signal to interference ratio graph
    Dousse, Olivier
    Franceschetti, Massimo
    Macris, Nicolas
    Meester, Ronald
    Thiran, Patrick
    JOURNAL OF APPLIED PROBABILITY, 2006, 43 (02) : 552 - 562
  • [24] Compatible sequences and a slow Winkler percolation
    Gács, P
    COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (06): : 815 - 856
  • [25] Percolation on dense random graphs with given degrees
    Lichev, Lyuben
    Mitsche, Dieter
    Perarnau, Guillem
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 167 : 250 - 282
  • [26] THE TIME OF BOOTSTRAP PERCOLATION WITH DENSE INITIAL SETS
    Bollobas, Bela
    Holmgren, Cecilia
    Smith, Paul
    Uzzell, Andrew J.
    ANNALS OF PROBABILITY, 2014, 42 (04): : 1337 - 1373
  • [27] Dense Neighborhoods on Affinity Graph
    Liu, Hairong
    Yang, Xingwei
    Latecki, Longin Jan
    Yan, Shuicheng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2012, 98 (01) : 65 - 82
  • [28] Dense Neighborhoods on Affinity Graph
    Hairong Liu
    Xingwei Yang
    Longin Jan Latecki
    Shuicheng Yan
    International Journal of Computer Vision, 2012, 98 : 65 - 82
  • [29] A DECOMPOSITION OF A GRAPH INTO DENSE SUBGRAPHS
    TOIDA, S
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (06): : 583 - 589
  • [30] WALSH SEQUENCES ARE NOWHERE DENSE
    COURY, JE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (05): : 846 - &