机构:
Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
Univ Memphis, Dept Math Sci, Memphis, TN 38152 USAUniv Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
Bollobas, Bela
[1
,2
]
Borgs, Christian
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Res New England, Cambridge, MA 01242 USAUniv Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
Borgs, Christian
[3
]
Chayes, Jennifer
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Res New England, Cambridge, MA 01242 USAUniv Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
Chayes, Jennifer
[3
]
论文数: 引用数:
h-index:
机构:
Riordan, Oliver
[4
]
机构:
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Microsoft Res New England, Cambridge, MA 01242 USA
[4] Univ Oxford, Inst Math, Oxford OX1 3LB, England
Percolation;
cut metric;
random graphs;
RANDOM SUBGRAPHS;
FINITE GRAPHS;
PHASE-TRANSITION;
COMPONENT;
EVOLUTION;
D O I:
10.1214/09-AOP478
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
In this paper we determine the percolation threshold for an arbitrary sequence of dense graphs (G(n)). Let lambda(n) be the largest eigenvalue of the adjacency matrix of G(n), and let G(n)(p(n)) be the random subgraph of G(n) obtained by keeping each edge independently with probability p(n). We show that the appearance of a giant component in G(n)(P-n) has a sharp threshold at p(n) = 1/lambda(n). In fact, we prove much more: if (G(n)) converges to an irreducible limit, then the density of the largest component of G(n)(c/n) tends to the survival probability of a multi-type branching process defined in terms of this limit. Here the notions of convergence and limit are those of Borgs, Chayes, Lovasz, Sos and Vesztergombi. In addition to using basic properties of convergence, we make heavy use of the methods of Bollobas, Janson and Riordan, who used multi-type branching processes to study the emergence of a giant component in a very broad family of sparse inhomogeneous random graphs.
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Rome, Italy
Braides, Andrea
Cermelli, Paolo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Rome, Italy
Cermelli, Paolo
Dovetta, Simone
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Torino, Dipartimento Sci Matemat GL Lagrange, Corso Duca Abruzzi 24, I-10129 Turin, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Rome, Italy