PERCOLATION ON DENSE GRAPH SEQUENCES

被引:54
|
作者
Bollobas, Bela [1 ,2 ]
Borgs, Christian [3 ]
Chayes, Jennifer [3 ]
Riordan, Oliver [4 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] Microsoft Res New England, Cambridge, MA 01242 USA
[4] Univ Oxford, Inst Math, Oxford OX1 3LB, England
来源
ANNALS OF PROBABILITY | 2010年 / 38卷 / 01期
基金
美国国家科学基金会;
关键词
Percolation; cut metric; random graphs; RANDOM SUBGRAPHS; FINITE GRAPHS; PHASE-TRANSITION; COMPONENT; EVOLUTION;
D O I
10.1214/09-AOP478
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we determine the percolation threshold for an arbitrary sequence of dense graphs (G(n)). Let lambda(n) be the largest eigenvalue of the adjacency matrix of G(n), and let G(n)(p(n)) be the random subgraph of G(n) obtained by keeping each edge independently with probability p(n). We show that the appearance of a giant component in G(n)(P-n) has a sharp threshold at p(n) = 1/lambda(n). In fact, we prove much more: if (G(n)) converges to an irreducible limit, then the density of the largest component of G(n)(c/n) tends to the survival probability of a multi-type branching process defined in terms of this limit. Here the notions of convergence and limit are those of Borgs, Chayes, Lovasz, Sos and Vesztergombi. In addition to using basic properties of convergence, we make heavy use of the methods of Bollobas, Janson and Riordan, who used multi-type branching processes to study the emergence of a giant component in a very broad family of sparse inhomogeneous random graphs.
引用
收藏
页码:150 / 183
页数:34
相关论文
共 50 条
  • [1] Limits of dense graph sequences
    Lovasz, Laszlo
    Szegedy, Balazs
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (06) : 933 - 957
  • [2] LOCALITY OF CRITICAL PERCOLATION ON EXPANDING GRAPH SEQUENCES
    Ren, Michael
    Sun, Nike
    arXiv, 2022,
  • [3] Γ-limit of the cut functional on dense graph sequences
    Braides, Andrea
    Cermelli, Paolo
    Dovetta, Simone
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2020, 26
  • [4] The k-core in percolated dense graph sequences
    Bayraktar, Erhan
    Chakraborty, Suman
    Zhang, Xin
    JOURNAL OF APPLIED PROBABILITY, 2025, 62 (01) : 298 - 318
  • [5] Graph bootstrap percolation
    Balogh, Jozsef
    Bollobas, Bela
    Morris, Robert
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (04) : 413 - 440
  • [6] Percolation in the secrecy graph
    Sarkar, Amites
    Haenggi, Martin
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2120 - 2132
  • [7] Percolation on Sequences of Graphs
    Riordan, Oliver
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL IV: INVITED LECTURES, 2010, : 2555 - 2578
  • [8] Percolation in dense storage arrays
    Kirkpatrick, S
    Wilcke, WW
    Garner, RB
    Huels, H
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 314 (1-4) : 220 - 229
  • [9] Continuum percolation in the Gabriel graph
    Bertin, E
    Billiot, JM
    Drouilhet, R
    ADVANCES IN APPLIED PROBABILITY, 2002, 34 (04) : 689 - 701
  • [10] PARTIAL DIMENSIONAL SEQUENCES AND PERCOLATION
    GEFEN, Y
    MANDELBROT, BB
    AHARONY, A
    KAPITULNIK, A
    JOURNAL OF STATISTICAL PHYSICS, 1984, 36 (5-6) : 827 - 830