Chemical Graph Theory for Property Modeling in QSAR and QSPR-Charming QSAR & QSPR

被引:18
|
作者
Costa, Paulo C. S. [1 ]
Evangelista, Joel S. [1 ]
Leal, Igor [2 ]
Miranda, Paulo C. M. L. [1 ]
机构
[1] Univ Campinas UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil
[2] Univ Campinas UNICAMP, Inst Language Studies, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
fragment based QSAR; fragment based QSPR; support vector machine; random forest; gradient boosting machine; FRAGMENT; GENERATION; COMPLEXATION; DESCRIPTORS; VALIDATION; CONSTANTS; LANGUAGE; OUTLIERS; SMILES; ISIDA;
D O I
10.3390/math9010060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quantitative structure-activity relationship (QSAR) and Quantitative structure-property relationship (QSPR) are mathematical models for the prediction of the chemical, physical or biological properties of chemical compounds. Usually, they are based on structural (grounded on fragment contribution) or calculated (centered on QSAR three-dimensional (QSAR-3D) or chemical descriptors) parameters. Hereby, we describe a Graph Theory approach for generating and mining molecular fragments to be used in QSAR or QSPR modeling based exclusively on fragment contributions. Merging of Molecular Graph Theory, Simplified Molecular Input Line Entry Specification (SMILES) notation, and the connection table data allows a precise way to differentiate and count the molecular fragments. Machine learning strategies generated models with outstanding root mean square error (RMSE) and R-2 values. We also present the software Charming QSAR & QSPR, written in Python, for the property prediction of chemical compounds while using this approach.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [41] Basic Validation Procedures for Regression Models in QSAR and QSPR Studies: Theory and Application
    Kiralj, Rudolf
    Ferreira, Marcia M. C.
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2009, 20 (04) : 770 - 787
  • [42] QSAR/QSPR modelling - Finding rules in noisy data?
    Darvas, Ferenc
    Kappe, Oliver
    Schneider, Gisbert
    Wiese, Michael
    Kubinyi, Hugo
    QSAR & COMBINATORIAL SCIENCE, 2006, 25 (10): : 811 - 812
  • [43] Application of a novel ranking approach in QSPR-QSAR
    Duchowicz, Pablo R.
    Castro, Eduardo A.
    Fernandez, Francisco M.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 43 (02) : 620 - 636
  • [44] Practical machine learning methods for QSPR and QSAR predictions
    Tkachenko, Valery
    Korotcov, Alexander
    Zakharov, Rick
    Sattarov, Boris
    Mitrofanov, Artem
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [45] QSAR and QSPR studies of a highly structured physicochemical domain
    Nicolotti, O
    Carotti, A
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2006, 46 (01) : 264 - 276
  • [46] TOPOLOGICAL INDEXES BASED ON WEIGHTS OF THE MOLECULAR GRAPH VERTICES FOR INVESTIGATIONS IN THE FIELD OF QSAR AND QSPR
    PETELIN, DY
    PALYULIN, VA
    ZEFIROV, NS
    DOKLADY AKADEMII NAUK, 1992, 324 (05) : 1019 - 1022
  • [47] Use of 13C NMR Chemical Shift as QSAR/QSPR Descriptor
    Verma, Rajeshwar P.
    Hansch, Corwin
    CHEMICAL REVIEWS, 2011, 111 (04) : 2865 - 2899
  • [48] Exhaustive Structure Generation for Inverse-QSPR/QSAR
    Miyao, Tomoyuki
    Arakawa, Masamoto
    Funatsu, Kimito
    MOLECULAR INFORMATICS, 2010, 29 (1-2) : 111 - 125
  • [49] Evaluation and use of BCUT descriptors in QSAR and QSPR studies
    Stanton, DT
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (01): : 11 - 20
  • [50] Current Mathematical Methods Used in QSAR/QSPR Studies
    Liu, Peixun
    Long, Wei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2009, 10 (05): : 1978 - 1998