Chemical Graph Theory for Property Modeling in QSAR and QSPR-Charming QSAR & QSPR

被引:18
|
作者
Costa, Paulo C. S. [1 ]
Evangelista, Joel S. [1 ]
Leal, Igor [2 ]
Miranda, Paulo C. M. L. [1 ]
机构
[1] Univ Campinas UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil
[2] Univ Campinas UNICAMP, Inst Language Studies, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
fragment based QSAR; fragment based QSPR; support vector machine; random forest; gradient boosting machine; FRAGMENT; GENERATION; COMPLEXATION; DESCRIPTORS; VALIDATION; CONSTANTS; LANGUAGE; OUTLIERS; SMILES; ISIDA;
D O I
10.3390/math9010060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quantitative structure-activity relationship (QSAR) and Quantitative structure-property relationship (QSPR) are mathematical models for the prediction of the chemical, physical or biological properties of chemical compounds. Usually, they are based on structural (grounded on fragment contribution) or calculated (centered on QSAR three-dimensional (QSAR-3D) or chemical descriptors) parameters. Hereby, we describe a Graph Theory approach for generating and mining molecular fragments to be used in QSAR or QSPR modeling based exclusively on fragment contributions. Merging of Molecular Graph Theory, Simplified Molecular Input Line Entry Specification (SMILES) notation, and the connection table data allows a precise way to differentiate and count the molecular fragments. Machine learning strategies generated models with outstanding root mean square error (RMSE) and R-2 values. We also present the software Charming QSAR & QSPR, written in Python, for the property prediction of chemical compounds while using this approach.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [31] On the use of neural network ensembles in QSAR and QSPR
    Agrafiotis, DK
    Cedeño, W
    Lobanov, VS
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (04): : 903 - 911
  • [32] QSAR/QSPR studies by Cluj and Szeged descriptors
    Katona, G
    Turcu, G
    Kiss, AA
    Minailiuc, OM
    Diudea, MV
    REVUE ROUMAINE DE CHIMIE, 2001, 46 (04) : 395 - 410
  • [33] Use of semiempirical quantum-chemical molecular descriptors in QSAR/QSPR.
    Karelson, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 211 : 154 - COMP
  • [34] Inverse QSPR/QSAR Analysis for Chemical Structure Generation (from y to x)
    Miyao, Tomoyuki
    Kaneko, Hiromasa
    Funatsu, Kimito
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2016, 56 (02) : 286 - 299
  • [35] QSPR/QSAR: State-of-Art, Weirdness, the Future
    Toropov, Andrey A.
    Toropova, Alla P.
    MOLECULES, 2020, 25 (06):
  • [36] Intercorrelation Limits in Molecular Descriptor Preselection for QSAR/QSPR
    Racz, Anita
    Bajusz, David
    Heberger, Karoly
    MOLECULAR INFORMATICS, 2019, 38 (8-9)
  • [37] y-Randomization and its variants in QSPR/QSAR
    Ruecker, Christoph
    Ruecker, Gerta
    Meringer, Markus
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2007, 47 (06) : 2345 - 2357
  • [38] QSPR designer – employ your own descriptors in the automated QSAR modeling process
    Ondřej Skřehota
    Radka Svobodová Vařeková
    Stanislav Geidl
    Michal Kudera
    David Sehnal
    Crina-Maria Ionescu
    Jan Žídek
    Jaroslav Koča
    Journal of Cheminformatics, 4 (Suppl 1)
  • [39] Activity evaluation of some psychoactive drugs with the application of QSAR/QSPR modeling methods
    Kawczak, Piotr
    Bober, Leszek
    Baczek, Tomasz
    MEDICINAL CHEMISTRY RESEARCH, 2018, 27 (10) : 2279 - 2286
  • [40] Application of a novel ranking approach in QSPR-QSAR
    Pablo R. Duchowicz
    Eduardo A. Castro
    Francisco M. Fernández
    Journal of Mathematical Chemistry, 2008, 43 : 620 - 636