Chemical Graph Theory for Property Modeling in QSAR and QSPR-Charming QSAR & QSPR

被引:18
|
作者
Costa, Paulo C. S. [1 ]
Evangelista, Joel S. [1 ]
Leal, Igor [2 ]
Miranda, Paulo C. M. L. [1 ]
机构
[1] Univ Campinas UNICAMP, Inst Chem, BR-13083970 Campinas, SP, Brazil
[2] Univ Campinas UNICAMP, Inst Language Studies, BR-13083970 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
fragment based QSAR; fragment based QSPR; support vector machine; random forest; gradient boosting machine; FRAGMENT; GENERATION; COMPLEXATION; DESCRIPTORS; VALIDATION; CONSTANTS; LANGUAGE; OUTLIERS; SMILES; ISIDA;
D O I
10.3390/math9010060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quantitative structure-activity relationship (QSAR) and Quantitative structure-property relationship (QSPR) are mathematical models for the prediction of the chemical, physical or biological properties of chemical compounds. Usually, they are based on structural (grounded on fragment contribution) or calculated (centered on QSAR three-dimensional (QSAR-3D) or chemical descriptors) parameters. Hereby, we describe a Graph Theory approach for generating and mining molecular fragments to be used in QSAR or QSPR modeling based exclusively on fragment contributions. Merging of Molecular Graph Theory, Simplified Molecular Input Line Entry Specification (SMILES) notation, and the connection table data allows a precise way to differentiate and count the molecular fragments. Machine learning strategies generated models with outstanding root mean square error (RMSE) and R-2 values. We also present the software Charming QSAR & QSPR, written in Python, for the property prediction of chemical compounds while using this approach.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [21] 离子液体的QSPR/QSAR研究
    郑燕升
    莫倩
    刘昭明
    化学进展, 2009, 21 (09) : 1772 - 1781
  • [22] Generalized fragmental approach in QSAR/QSPR studies
    Sosnin, S. B.
    Radchenko, E. V.
    Palyulin, V. A.
    Zefirov, N. S.
    DOKLADY CHEMISTRY, 2015, 463 : 185 - 188
  • [23] Generalized fragmental approach in QSAR/QSPR studies
    S. B. Sosnin
    E. V. Radchenko
    V. A. Palyulin
    N. S. Zefirov
    Doklady Chemistry, 2015, 463 : 185 - 188
  • [24] Is your QSAR/QSPR descriptor real or trash?
    Kiralj, Rudolf
    Ferreira, Marcia M. C.
    JOURNAL OF CHEMOMETRICS, 2010, 24 (11-12) : 681 - 693
  • [25] About orthogonal descriptors in QSPR/QSAR theories
    Fernández, FM
    Duchowicz, PR
    Castro, EA
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2004, (51) : 39 - 57
  • [26] Substituent electronic descriptors for fast QSAR/QSPR
    Hemmateenejad, Bahram
    Sanchooli, Mahmood
    JOURNAL OF CHEMOMETRICS, 2007, 21 (3-4) : 96 - 107
  • [27] Graph signal processing based nonlinear QSAR/QSPR model learning for compounds
    Song, Xiaoying
    Wen, Gaoya
    Chai, Li
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 91
  • [28] QSAR and QSPR based solely on surface properties?
    Clark, T
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2004, 22 (06): : 519 - 525
  • [29] Nonlinear multivariate polynomial ensembles in QSAR/QSPR
    Nadramija, Damir
    Lucic, Bono
    Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 1570 - 1573
  • [30] A New Strategy of Outlier Detection for QSAR/QSPR
    Cao, Dong-Sheng
    Liang, Yi-Zeng
    Xu, Qing-Song
    Li, Hong-Dong
    Chen, Xian
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (03) : 592 - 602