How to compute the Stanley depth of a monomial ideal

被引:102
|
作者
Herzog, Huergen [1 ]
Vladoiu, Marius [2 ]
Zheng, Xinxian [1 ]
机构
[1] Univ Duisburg Essen, Fachbereich Math & Informat, D-45117 Essen, Germany
[2] Univ Bucuresti, Fac Matemat & Informat, RO-010014 Bucharest, Romania
关键词
Stanley depth; Stanley decomposition; Partitions; Prime filtrations; FILTRATIONS; CONJECTURE; MODULES;
D O I
10.1016/j.jalgebra.2008.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J subset of I be monomial ideals. We show that the Stanley depth of I/J can be computed in a finite number of steps. We also introduce the fdepth of a monomial ideal which is defined in terms of prime filtrations and show that it can also be computed in a finite number of steps. In both cases it is shown that these invariants can be determined by considering partitions of suitable finite posets into intervals. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3151 / 3169
页数:19
相关论文
共 50 条
  • [41] Stanley depth of factors of polymatroidal ideals and the edge ideal of forests
    Alipour, A.
    Fakhari, S. A. Seyed
    Yassemi, S.
    ARCHIV DER MATHEMATIK, 2015, 105 (04) : 323 - 332
  • [42] How to compute the multigraded Hilbert depth of a module
    Ichim, Bogdan
    Moyano-Fernandez, Julio-Jose
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (11-12) : 1274 - 1287
  • [43] UPPER AND LOWER BOUNDS FOR THE STANLEY DEPTH OF CERTAIN CLASSES OF MONOMIAL IDEALS AND THEIR RESIDUE CLASS RINGS
    Ishaq, Muhammad
    Qureshi, Muhammad Imran
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (03) : 1107 - 1116
  • [44] The signature of a monomial ideal
    Ibarguen, Jovanny
    Moran, Daniel S.
    Valencia, Carlos E.
    Villarreal, Rafael H.
    AIMS MATHEMATICS, 2024, 9 (10): : 27955 - 27978
  • [45] On the radical of a monomial ideal
    J. Herzog
    Y. Takayama
    N. Terai
    Archiv der Mathematik, 2005, 85 : 397 - 408
  • [46] On the radical of a monomial ideal
    Herzog, J
    Takayama, Y
    Terai, N
    ARCHIV DER MATHEMATIK, 2005, 85 (05) : 397 - 408
  • [47] Stanley Depth of the Edge Ideal of Extended Gear Networks and Application in Circuit Analysis
    Zeng, Guiling
    Munir, Muhammad Mobeen
    Farooki, Raheel
    Athar, Muhammad
    Liu, Jia Bao
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [48] STANLEY CONJECTURE ON MONOMIAL IDEALS OF MIXED PRODUCTS
    Restuccia, Gaetana
    Tang, Zhongming
    Utano, Rosanna
    JOURNAL OF COMMUTATIVE ALGEBRA, 2015, 7 (01) : 77 - 88
  • [49] On Stanley Depths of Certain Monomial Factor Algebras
    Tang, Zhongming
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (02): : 393 - 401
  • [50] DERIVATIONS PRESERVING A MONOMIAL IDEAL
    Tadesse, Yohannes
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (09) : 2935 - 2942