DERIVATIONS PRESERVING A MONOMIAL IDEAL

被引:4
|
作者
Tadesse, Yohannes [1 ]
机构
[1] Univ Addis Ababa, Dept Math, Addis Ababa, Ethiopia
关键词
Derivations; monomial ideals; multiplier ideals;
D O I
10.1090/S0002-9939-09-09922-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let I be a monomial ideal in a polynomial ring A = k[x(1),...,x(n)] over a field k of characteristic 0, T-A/k(I) be the module of I-preserving k-derivations oil A and G be the n-dimensional algebraic torus on k. We compute the weight spaces of T-A/k(I) considered as a representation of G. Using this, we show that T-A/k(I) preserves the integral closure of I and the multiplier ideals of I.
引用
收藏
页码:2935 / 2942
页数:8
相关论文
共 50 条
  • [1] Monomial preserving derivations and Mathieu-Zhao subspaces
    van den Essen, Arno
    Sun, Xiaosong
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (10) : 3219 - 3223
  • [2] MONOMIAL DERIVATIONS
    Ollagnier, Jean Moulin
    Nowicki, Andrzej
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (09) : 3138 - 3150
  • [3] Rational constants of monomial derivations
    Nowicki, Andrzej
    Zielinski, Janusz
    JOURNAL OF ALGEBRA, 2006, 302 (01) : 387 - 418
  • [4] The signature of a monomial ideal
    Ibarguen, Jovanny
    Moran, Daniel S.
    Valencia, Carlos E.
    Villarreal, Rafael H.
    AIMS MATHEMATICS, 2024, 9 (10): : 27955 - 27978
  • [5] ON THE SEMISIMPLICITY OF THE OUTER DERIVATIONS OF MONOMIAL ALGEBRAS
    Sanchez-Flores, Selene
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (09) : 3410 - 3434
  • [6] On the radical of a monomial ideal
    J. Herzog
    Y. Takayama
    N. Terai
    Archiv der Mathematik, 2005, 85 : 397 - 408
  • [7] On the radical of a monomial ideal
    Herzog, J
    Takayama, Y
    Terai, N
    ARCHIV DER MATHEMATIK, 2005, 85 (05) : 397 - 408
  • [8] Monomial Derivations without Darboux Polynomials
    Li Jian-tao
    Communications in Mathematical Research, 2017, 33 (02) : 185 - 192
  • [9] THE SOCLE MODULE OF A MONOMIAL IDEAL
    Chu, Lizhong
    Herzog, Juergen
    Lu, Dancheng
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (03) : 805 - 821
  • [10] The order of dominance of a monomial ideal
    Alesandroni, G.
    ALGEBRA AND DISCRETE MATHEMATICS, 2023, 35 (01): : 1 - 21