How to compute the Stanley depth of a monomial ideal

被引:102
|
作者
Herzog, Huergen [1 ]
Vladoiu, Marius [2 ]
Zheng, Xinxian [1 ]
机构
[1] Univ Duisburg Essen, Fachbereich Math & Informat, D-45117 Essen, Germany
[2] Univ Bucuresti, Fac Matemat & Informat, RO-010014 Bucharest, Romania
关键词
Stanley depth; Stanley decomposition; Partitions; Prime filtrations; FILTRATIONS; CONJECTURE; MODULES;
D O I
10.1016/j.jalgebra.2008.01.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J subset of I be monomial ideals. We show that the Stanley depth of I/J can be computed in a finite number of steps. We also introduce the fdepth of a monomial ideal which is defined in terms of prime filtrations and show that it can also be computed in a finite number of steps. In both cases it is shown that these invariants can be determined by considering partitions of suitable finite posets into intervals. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3151 / 3169
页数:19
相关论文
共 50 条
  • [31] STANLEY DEPTH OF WEAKLY POLYMATROIDAL IDEALS AND SQUAREFREE MONOMIAL IDEALS
    Fakhari, S. A. Seyed
    ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (03) : 871 - 881
  • [32] STANLEY DEPTH OF POWERS OF THE EDGE IDEAL OF A FOREST
    Pournaki, M. R.
    Fakhari, S. A. Seyed
    Yassemi, S.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (10) : 3327 - 3336
  • [33] DEPTH AND STANLEY DEPTH OF POWERS OF THE PATH IDEAL OF A PATH GRAPH
    Balanescu, Silviu
    Cimpoea, Mircea
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (04): : 65 - 76
  • [34] DEPTH AND STANLEY DEPTH OF POWERS OF THE PATH IDEAL OF A PATH GRAPH
    Bălănescu, Silviu
    Cimpoeaş, Mircea
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2024, 86 (04): : 65 - 76
  • [35] STANLEY DEPTH OF CERTAIN CLASSES OF SQUARE-FREE MONOMIAL IDEALS
    Cimpoeas, Mircea
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (02): : 33 - 40
  • [36] On the Stanley Depth and the Schmitt-Vogel Number of Squarefree Monomial Ideals
    Fakhari, S. A. Seyed
    MULTIGRADED ALGEBRA AND APPLICATIONS, 2018, 238 : 77 - 82
  • [37] STANLEY DEPTH OF THE PATH IDEAL ASSOCIATED TO A LINE GRAPH
    Cimpoeas, Mircea
    MATHEMATICAL REPORTS, 2017, 19 (02): : 157 - 164
  • [38] Stanley depth of complete intersection monomial ideals and upper-discrete partitions
    Shen, Yi Huang
    JOURNAL OF ALGEBRA, 2009, 321 (04) : 1285 - 1292
  • [39] Depth and Stanley depth of the path ideal associated to an n-cyclic graph
    Zhu, Guangjun
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (05) : 1174 - 1183
  • [40] Stanley depth of factors of polymatroidal ideals and the edge ideal of forests
    A. Alipour
    S. A. Seyed Fakhari
    S. Yassemi
    Archiv der Mathematik, 2015, 105 : 323 - 332