Stanley depth of complete intersection monomial ideals and upper-discrete partitions

被引:27
|
作者
Shen, Yi Huang [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Stanley depth; Partitions; Complete intersection; Squarefree monomial ideal;
D O I
10.1016/j.jalgebra.2008.11.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let I be an m-generated complete intersection monomial ideal in S=K vertical bar x(1).....x(n)vertical bar.We show thattheStanley depth of 1 is n-[m/2]. We also study the Upper-discrete structure for monomial ideals and prove that if I is a squarefree monomial ideal minimally generated by 3 elements, then the Stanley depth of I is n-1. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1285 / 1292
页数:8
相关论文
共 37 条
  • [1] Stanley depth of complete intersection monomial ideals
    Cimpoeas, Mircea
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2008, 51 (03): : 205 - 211
  • [2] STANLEY DEPTH OF QUOTIENT OF MONOMIAL COMPLETE INTERSECTION IDEALS
    Cimpoeas, Mircea
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (10) : 4274 - 4280
  • [3] The Stanley conjecture on monomial almost complete intersection ideals
    Cimpoeas, Mircea
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2012, 55 (01): : 35 - 39
  • [4] ON THE STANLEY DEPTH OF MONOMIAL IDEALS
    Cimpoeas, Mircea
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 58 (02): : 205 - 212
  • [5] Stanley depth of monomial ideals
    Popescu, Dorin
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2015, 58 (01): : 95 - 101
  • [6] Stanley depth of squarefree monomial ideals
    Keller, Mitchel T.
    Young, Stephen J.
    JOURNAL OF ALGEBRA, 2009, 322 (10) : 3789 - 3792
  • [7] ON THE STANLEY DEPTH AND SIZE OF MONOMIAL IDEALS
    Fakhari, S. A. Seyed
    GLASGOW MATHEMATICAL JOURNAL, 2017, 59 (03) : 705 - 715
  • [8] On the Stanley Depth of Powers of Monomial Ideals
    Fakhari, S. A. Seyed
    MATHEMATICS, 2019, 7 (07)
  • [9] AN ALGORITHM TO COMPUTE THE STANLEY DEPTH OF MONOMIAL IDEALS
    Rinaldo, Giancarlo
    MATEMATICHE, 2008, 63 (02): : 243 - 256
  • [10] Stanley depth of the integral closure of monomial ideals
    S. A. Seyed Fakhari
    Collectanea Mathematica, 2013, 64 : 351 - 362